1
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Huang W, Zhang W, Chen G, Chen Y, Ma J, Huang D, Zhao Q, Wu B. Visible light-driven oxidation of non-native substrate by laccase attached on Ru-based metal-organic frameworks. J Environ Sci (China) 2024; 137:741-753. [PMID: 37980056 DOI: 10.1016/j.jes.2023.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 11/20/2023]
Abstract
Light-induced electron transfer can broaden the substrate range of metalloenzyme. However, the efficiency of photo-enzyme coupling is limited by the poor combination of photosensitizer or photocatalyst with enzyme. Herein, we prepared the nano-photocatalyst MIL-125-NH2@Ru(bpy) by in site embedding ruthenium pyridine-diimine complex [Ru(bpy)3]2+ into metal organic frameworks MIL-125-NH2 and associated it with multicopper oxidase (MCO) laccase. Compared to [Ru(bpy)3]2+, the coupling efficiency of MIL-125-NH2@Ru(bpy)3 for enzymatic oxygen reduction increased by 35.7%. A series of characterizations confirmed that the amino group of laccase formed chemical bonds with the surface defects or hydrophobic groups of MIL-125-NH2@Ru(bpy)3. Consequently, the tight binding accelerated the quenching process and electron transfer between laccase and the immobilized ruthenium pyridine-diimine complex. This work would open an avenue for the synthesis of MOFs photocatalyst towards photo-enzyme coupling.
Collapse
Affiliation(s)
- Wenguang Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guantongyi Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Jun Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Dawei Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Qinzheng Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| |
Collapse
|
3
|
Alvarez-Hernandez JL, Salamatian AA, Sopchak AE, Bren KL. Hydrogen evolution catalysis by a cobalt porphyrin peptide: A proposed role for porphyrin propionic acid groups. J Inorg Biochem 2023; 249:112390. [PMID: 37801884 DOI: 10.1016/j.jinorgbio.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Cobalt microperoxidase-11 (CoMP11-Ac) is a cobalt porphyrin-peptide catalyst for hydrogen (H2) evolution from water. Herein, we assess electrocatalytic activity of CoMP11-Ac from pH 1.0-10.0. This catalyst remains intact and active under highly acidic conditions (pH 1.0) that are desirable for maximizing H2 evolution activity. Analysis of electrochemical data indicate that H2 evolution takes place by two pH-dependent mechanisms. At pH < 4.3, a proton transfer mechanism involving the propionic acid groups of the porphyrin is proposed, decreasing the catalytic overpotential by 280 mV.
Collapse
Affiliation(s)
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Andrew E Sopchak
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Kara L Bren
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| |
Collapse
|
4
|
Chen Z, Quek G, Zhu JY, Chan SJW, Cox-Vázquez SJ, Lopez-Garcia F, Bazan GC. A Broad Light-Harvesting Conjugated Oligoelectrolyte Enables Photocatalytic Nitrogen Fixation in a Bacterial Biohybrid. Angew Chem Int Ed Engl 2023; 62:e202307101. [PMID: 37438952 DOI: 10.1002/anie.202307101] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC, which endows aerobic N2 -fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC/A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15 N2 atmosphere led to the enrichment of 15 N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2 .
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Glenn Quek
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Ji-Yu Zhu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Sarah J Cox-Vázquez
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Fernando Lopez-Garcia
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
5
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
6
|
Edwards EH, Jelušić J, Kosko RM, McClelland KP, Ngarnim SS, Chiang W, Lampa-Pastirk S, Krauss TD, Bren KL. Shewanella oneidensis MR-1 respires CdSe quantum dots for photocatalytic hydrogen evolution. Proc Natl Acad Sci U S A 2023; 120:e2206975120. [PMID: 37068259 PMCID: PMC10151509 DOI: 10.1073/pnas.2206975120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis. Semiconductor nanocrystals are highly active and robust photocatalysts for hydrogen (H2) evolution, but their use is hindered by the oxidative side of the reaction. In this system, Shewanella oneidensis MR-1 provides electrons to a CdSe nanocrystalline photocatalyst, enabling visible light-driven H2 production. Unlike microbial electrolysis cells, this system requires no external potential. Illuminating this system at 530 nm yields continuous H2 generation for 168 h, which can be lengthened further by replenishing bacterial nutrients.
Collapse
Affiliation(s)
- Emily H. Edwards
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Jana Jelušić
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Ryan M. Kosko
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | | | - Soraya S. Ngarnim
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY14627
| | | | - Todd D. Krauss
- Department of Chemistry, University of Rochester, Rochester, NY14627
- Department of Optics, University of Rochester, Rochester, NY14627
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY14627
| |
Collapse
|
7
|
Liu B, Zubi YS, Lewis JC. Iridium(III) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution. Dalton Trans 2023; 52:5034-5038. [PMID: 37060130 PMCID: PMC10187040 DOI: 10.1039/d3dt00932g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Artificial metalloenzymes (ArMs) can combine the unique features of both metal complexes and enzymes by incorporating a cofactor within a protein scaffold. Herein, we describe a panel of ArMs constructed by covalently linking Ir(III) polypyridyl complexes into a prolyl oligopeptidase scaffold. Spectroscopic methods were used to examine how properties of the resulting ArMs are influenced by structural variation of the cyclometalated ligands and the protein scaffold. Visible light photocatalysis by these hybrid catalysts was also examined, leading to the finding that they catalyze inter/intra-molecular [2 + 2] photocycloaddition in aqueous solution. Low but reproducible enantioselectivity was observed using a cofactor that undergoes partial kinetic resolution upon bioconjugation within the ArM active site, showing the importance of scaffold/cofactor interactions for enabling selective ArM photocatalysis. Further evidence of the importance of cofactor/scaffold interactions was provided by analyzing native POP peptidase catalysis by the ArMs. Together, these studies show how Ir(III)-based ArMs constitute a promising starting point for ongoing studies to control the stereoselectivity of EnT reactions by engineering substrate binding/activation motifs in POP.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Yasmine S Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
8
|
Salamatian AA, Bren KL. Bioinspired and biomolecular catalysts for energy conversion and storage. FEBS Lett 2023; 597:174-190. [PMID: 36331366 DOI: 10.1002/1873-3468.14533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Metalloenzymes are remarkable for facilitating challenging redox transformations with high efficiency and selectivity. In the area of alternative energy, scientists aim to capture these properties in bioinspired and engineered biomolecular catalysts for the efficient and fast production of fuels from low-energy feedstocks such as water and carbon dioxide. In this short review, efforts to mimic biological catalysts for proton reduction and carbon dioxide reduction are highlighted. Two important recurring themes are the importance of the microenvironment of the catalyst active site and the key role of proton delivery to the active site in achieving desired reactivity. Perspectives on ongoing and future challenges are also provided.
Collapse
Affiliation(s)
| | - Kara L Bren
- Department of Chemistry, University of Rochester, NY, USA
| |
Collapse
|
9
|
Taylor A, Heyes DJ, Scrutton NS. Catalysis by Nature's photoenzymes. Curr Opin Struct Biol 2022; 77:102491. [PMID: 36323132 DOI: 10.1016/j.sbi.2022.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 12/14/2022]
Abstract
Photoenzymes use light to initiate biochemical reactions. Although rarely found in nature, their study has advanced understanding of how light energy can be harnessed to facilitate enzyme catalysis, which is also of importance to the design and engineering of man-made photocatalysts. Natural photoenzymes can be assigned to one of two families, based broadly on the nature of the light-sensing chromophores used, those being chlorophyll-like tetrapyrroles or flavins. In all cases, light absorption leads to excited state electron transfer, which in turn initiates photocatalysis. Reviewed here are recent findings relating to the structures and mechanisms of known photoenzymes. We highlight recent advances that have deepened understanding of mechanisms in biological photocatalysis.
Collapse
Affiliation(s)
- Aoife Taylor
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, M1 7DN, United Kingdom
| | - Derren J Heyes
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, M1 7DN, United Kingdom. https://twitter.com/DerrenHeyes
| | - Nigel S Scrutton
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, M1 7DN, United Kingdom.
| |
Collapse
|
10
|
Mebs S, Beckmann J. In silico activation of dinitrogen with a light atom molecule. Phys Chem Chem Phys 2022; 24:20953-20967. [PMID: 35993454 DOI: 10.1039/d2cp02516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NN triple bond can be cleaved in silico with a light atom molecule containing only the earth abundant elements C, H, Si, and P. Extensive density functional theory (DFT) computations on various classes of peri-substituted scaffolds containing Lewis acidic and basic sites in the framework of frustrated Lewis pairs (FLP) indicate that the presence of two silyl cations and two P atoms in a flexible but not too flexible arrangement is essential for energy efficient N2-activation. The non-bonding lone-pair electrons of the P atoms thereby serve as donors towards N2, whereas the lone-pairs of N2 donate into the silyl cations. Newly formed lone-pair basins in the N2-adducts balance surplus charge. Thereby, the N-N bond distance is increased by astonishing 0.3 Å, from 1.1 Å in N2 gas to 1.4 Å in the adduct, which makes this bond prone to subsequent addition of hydride ions and protonation, forming two secondary amine sites in the process and eventually breaking the NN triple bond. Potential formation of dead-end states, in which the dications ("active states") aversively form a Lewis acid (LA)-Lewis base (LB) bond, or in which the LA and LB sites are too far away from each other to be able to capture N2, are problematic but might be circumvented by proper choice of spacer molecules, such as acenaphthalene or biphenylene, and the ligands attached to the LA and LB atoms, such as phenyl or mesityl, and by purging the reaction solutions with gaseous N2 in the initial reaction steps. Charge redistributions via N2-activation and splitting were monitored by a variety of real-space bonding indicators (RSBIs) derived from the calculated electron and electron pair densities, which provided valuable insight into the bonding situation within the different reaction steps.
Collapse
Affiliation(s)
- Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
11
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Abstract
Some oxidoreductase enzymes use redox-active tyrosine, tryptophan, cysteine, and/or glycine residues as one-electron, high-potential redox (radical) cofactors. Amino-acid radical cofactors typically perform one of four tasks-they work in concert with a metallocofactor to carry out a multielectron redox process, serve as storage sites for oxidizing equivalents, activate the substrate molecules, or move oxidizing equivalents over long distances. It is challenging to experimentally resolve the thermodynamic and kinetic redox properties of a single-amino-acid residue. The inherently reactive and highly oxidizing properties of amino-acid radicals increase the experimental barriers further still. This review describes a family of stable and well-structured model proteins that was made specifically to study tyrosine and tryptophan oxidation-reduction. The so-called α3X model protein system was combined with very-high-potential protein film voltammetry, transient absorption spectroscopy, and theoretical methods to gain a comprehensive description of the thermodynamic and kinetic properties of protein tyrosine and tryptophan radicals.
Collapse
Affiliation(s)
- Cecilia Tommos
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
13
|
Edwards EH, Le JM, Salamatian AA, Peluso NL, Leone L, Lombardi A, Bren KL. A cobalt mimochrome for photochemical hydrogen evolution from neutral water. J Inorg Biochem 2022; 230:111753. [PMID: 35182844 PMCID: PMC9586700 DOI: 10.1016/j.jinorgbio.2022.111753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/21/2022]
Abstract
A system for visible light-driven hydrogen production from water is reported. This system makes use of a synthetic mini-enzyme known as a mimochrome (CoMC6*a) consisting of a cobalt deuteroporphyrin and two attached peptides as a catalyst, [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as a photosensitizer, and ascorbic acid as a sacrificial electron donor. The system achieves turnover numbers (TONs) up to 10,000 with respect to catalyst and optimal activity at pH 7. Comparison with related systems shows that CoMC6*a maintains the advantages of biomolecular catalysts, while exceeding other cobalt porphyrins in terms of total TON and longevity of catalysis. Herein, we lay groundwork for future study, where the synthetic nature of CoMC6*a will provide a unique opportunity to tailor proton reduction chemistry and expand to new reactivity.
Collapse
Affiliation(s)
- Emily H Edwards
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Jennifer M Le
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Noelle L Peluso
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 45, 80126 Naples, Italy.
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 45, 80126 Naples, Italy.
| | - Kara L Bren
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| |
Collapse
|
14
|
Durairaj P, Li S. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. ENGINEERING MICROBIOLOGY 2022; 2:100011. [PMID: 39628612 PMCID: PMC11610987 DOI: 10.1016/j.engmic.2022.100011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 (CYP) enzymes play crucial roles during the evolution and diversification of ancestral monocellular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including catalysis of housekeeping biochemical reactions, synthesis of diverse metabolites, detoxification of xenobiotics, and contribution to environmental adaptation. Eukaryotic CYPs with versatile functionalities are undeniably regarded as promising biocatalysts with great potential for biotechnological, pharmaceutical and chemical industry applications. Nevertheless, the modes of action and the challenges associated with these membrane-bound proteins have hampered the effective utilization of eukaryotic CYPs in a broader range. This review is focused on comprehensive and consolidated approaches to address the core challenges in heterologous expression of membrane-bound eukaryotic CYPs in different surrogate microbial cell factories, aiming to provide key insights for better studies and applications of diverse eukaryotic CYPs in the future. We also highlight the functional significance of the previously underrated cytochrome P450 reductases (CPRs) and provide a rational justification on the progression of CPR from auxiliary redox partner to function modulator in CYP catalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
15
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 258] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Cesana PT, Li BX, Shepard SG, Ting SI, Hart SM, Olson CM, Martinez Alvarado JI, Son M, Steiman TJ, Castellano FN, Doyle AG, MacMillan DW, Schlau-Cohen GS. A biohybrid strategy for enabling photoredox catalysis with low-energy light. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Winkler CK, Simić S, Jurkaš V, Bierbaumer S, Schmermund L, Poschenrieder S, Berger SA, Kulterer E, Kourist R, Kroutil W. Accelerated Reaction Engineering of Photo(bio)catalytic Reactions through Parallelization with an Open‐Source Photoreactor. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christoph K. Winkler
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Stefan Simić
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Valentina Jurkaš
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Sarah Bierbaumer
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Luca Schmermund
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Silvan Poschenrieder
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Sarah A. Berger
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Elisa Kulterer
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology NAWI Graz Graz University of Technology Petersgasse 14 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
- BioTechMed Graz 8010 Graz Austria
- Field of Excellence BioHealth University of Graz 8010 Graz Austria
| |
Collapse
|
19
|
Alcala-Torano R, Halloran N, Gwerder N, Sommer DJ, Ghirlanda G. Light-Driven CO 2 Reduction by Co-Cytochrome b 562. Front Mol Biosci 2021; 8:609654. [PMID: 33937320 PMCID: PMC8082397 DOI: 10.3389/fmolb.2021.609654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
The current trend in atmospheric carbon dioxide concentrations is causing increasing concerns for its environmental impacts, and spurring the developments of sustainable methods to reduce CO2 to usable molecules. We report the light-driven CO2 reduction in water in mild conditions by artificial protein catalysts based on cytochrome b 562 and incorporating cobalt protoporphyrin IX as cofactor. Incorporation into the protein scaffolds enhances the intrinsic reactivity of the cobalt porphyrin toward proton reduction and CO generation. Mutations around the binding site modulate the activity of the enzyme, pointing to the possibility of further improving catalytic activity through rational design or directed evolution.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
20
|
DiPrimio DJ, Holland PL. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. J Inorg Biochem 2021; 219:111430. [PMID: 33873051 DOI: 10.1016/j.jinorgbio.2021.111430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Artificial metalloenzymes (ArMs) consist of an unnatural metal or cofactor embedded in a protein scaffold, and are an excellent platform for applying the concepts of protein engineering to catalysis. In this Focused Review, we describe the application of ArMs as simple, tunable artificial models of the active sites of complex natural metalloenzymes for small-molecule activation. In this sense, ArMs expand the strategies of synthetic model chemistry to protein-based supporting ligands with potential for participation from the second coordination sphere. We focus specifically on ArMs that are structural, spectroscopic, and functional models of enzymes for activation of small molecules like CO, CO2, O2, N2, and NO, as well as production/consumption of H2. These ArMs give insight into the identities and roles of metalloenzyme structural features within and near the cofactor. We give examples of ArM work relevant to hydrogenases, acetyl-coenzyme A synthase, superoxide dismutase, heme oxygenases, nitric oxide reductase, methyl-coenzyme M reductase, copper-O2 enzymes, and nitrogenases.
Collapse
Affiliation(s)
- Daniel J DiPrimio
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States.
| |
Collapse
|
21
|
Edwards EH, Jelušić J, Chakraborty S, Bren KL. Photochemical hydrogen evolution from cobalt microperoxidase-11. J Inorg Biochem 2021; 217:111384. [PMID: 33588276 DOI: 10.1016/j.jinorgbio.2021.111384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/27/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
A photochemical system utilizing the semisynthetic biomolecular catalyst acetylated cobalt microperoxidase-11 (CoMP11-Ac) along with [Ru(bpy)3]2+ as a photosensitizer and ascorbic acid as an electron donor is shown to generate hydrogen from water in a visible light-driven reaction. The reductive quenching pathway facilitated by photoexcited [Ru(bpy)3]2+ overcomes the high overpotential observed for CoMP11-Ac in electrocatalysis, yielding turnover numbers ranging from 606 to 2390 (2 μM - 0.1 μM CoMP11-Ac). The longevity of CoMP11-Ac in the photochemical system, sustaining catalysis for over 20 h, is in contrast to its previously reported behavior in an electrochemical system where catalysis slows after 15 min. Proton reduction turnover number and rate are highest at a neutral pH, a rare feature among cobalt catalysts in similar photochemical systems, which typically function best under acidic conditions. Incorporating biomolecular components into the design of catalysts for photochemical systems may address the need for hydrogen generation from neutral-pH water sources.
Collapse
Affiliation(s)
- Emily H Edwards
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States of America.
| | - Jana Jelušić
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States of America.
| | - Saikat Chakraborty
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States of America.
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States of America.
| |
Collapse
|
22
|
|
23
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
24
|
Fan Q, Neubauer P, Lenz O, Gimpel M. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview. Int J Mol Sci 2020; 21:E5890. [PMID: 32824336 PMCID: PMC7460606 DOI: 10.3390/ijms21165890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
Hydrogenases are complex metalloenzymes, showing tremendous potential as H2-converting redox catalysts for application in light-driven H2 production, enzymatic fuel cells and H2-driven cofactor regeneration. They catalyze the reversible oxidation of hydrogen into protons and electrons. The apo-enzymes are not active unless they are modified by a complicated post-translational maturation process that is responsible for the assembly and incorporation of the complex metal center. The catalytic center is usually easily inactivated by oxidation, and the separation and purification of the active protein is challenging. The understanding of the catalytic mechanisms progresses slowly, since the purification of the enzymes from their native hosts is often difficult, and in some case impossible. Over the past decades, only a limited number of studies report the homologous or heterologous production of high yields of hydrogenase. In this review, we emphasize recent discoveries that have greatly improved our understanding of microbial hydrogenases. We compare various heterologous hydrogenase production systems as well as in vitro hydrogenase maturation systems and discuss their perspectives for enhanced biohydrogen production. Additionally, activities of hydrogenases isolated from either recombinant organisms or in vivo/in vitro maturation approaches were systematically compared, and future perspectives for this research area are discussed.
Collapse
Affiliation(s)
- Qin Fan
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Peter Neubauer
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Oliver Lenz
- Department of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Matthias Gimpel
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| |
Collapse
|
25
|
Lombardi A, Cheruzel L, Liu L. Special issue (67:4): Synthetic and engineered enzymes for biocatalysis and biotransformation. Biotechnol Appl Biochem 2020; 67:461-462. [PMID: 32833251 PMCID: PMC7722187 DOI: 10.1002/bab.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Angela Lombardi
- University of Napoli Federico II, Department of Chemical Sciences, Napoli, Italy
| | - Lionel Cheruzel
- San Jose State University, Department of Chemistry, San José, CA, USA
| | - Long Liu
- Jiangnan University, Science Center for Future Foods, Wuxi, People’s Republic of China
| |
Collapse
|