1
|
Adugna Areti H, Jabesa A, Diriba Muleta M, Nemera Emana A. Adsorptive performances and valorization of green synthesized biochar-based activated carbon from banana peel and corn cob composites for the abatement of Cr(VI) from synthetic solutions: Parameters, isotherms, and remediation studies. Heliyon 2024; 10:e33811. [PMID: 39027535 PMCID: PMC11255510 DOI: 10.1016/j.heliyon.2024.e33811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
This study intended to remove Cr(VI) from an aqueous synthetic solution employing synthesized biochar adsorbent from a blend of locally sourced banana peel, and corn cob biomass wastes. An equal ratio of the prepared powder was activated with ZnCl2 solution (1:1 wt basis) and carbonized for 2 h at 600 °C. The proximate analysis of the selected BP-CCAC@ZC3 biochar was conducted. Subsequently, its surface area, surface functions, and morphology were examined using BET analysis, FTIR, and SEM techniques, respectively. The proximate analysis of BP-CCAC@ZC3 showed a moisture content of 2.37 ± 0.80 %, an ash content of 8.07 ± 0.75 %, volatile matter of 19.38 ± 2.66 %, and fixed carbon of 70.18 %. It was found that the synthesized BP-CCAC@ZC3 had 432.149 m2/g of a specific area as per the BET surface area analysis. The highest efficiency for Cr(VI) removal was determined to be 97.92 % through adsorption batch tests using a dose of 0.4 g of BP-CCAC@ZC3, an initial Cr(VI) concentration of 20 mg/L, pH of 2, and 35 min contact time. Likewise, the adsorption process was effectively described by the Langmuir isotherm model, which had a high correlation coefficient (R 2 = 0.9977) and a maximum adsorption capacity of 19.16 mg/g, indicating a monolayer adsorption mechanism. The BP-CCAC@ZC3 biochar exhibited reusability for up to four cycles with only a slight decrease in effectiveness, highlighting its potential for sustainable wastewater treatment. Overall, using corn cob and banana peel composites to synthesize activated carbon with ZnCl2 offers a promising method for effectively removing Cr(VI) containing wastewater.
Collapse
Affiliation(s)
- Hirpha Adugna Areti
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Melkiyas Diriba Muleta
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Abdi Nemera Emana
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| |
Collapse
|
2
|
Li Z, Gao J, Wang B, Zhang H, Tian Y, Peng R, Yao Q. Ectopic expression of an Old Yellow Enzyme (OYE3) gene from Saccharomyces cerevisiae increases the tolerance and phytoremediation of 2-nitroaniline in rice. Gene 2024; 906:148239. [PMID: 38325666 DOI: 10.1016/j.gene.2024.148239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
2-nitroaniline (2-NA) is an environmental pollutant and has been extensively used as intermediates in organic synthesis. The presence of 2-NA in the environment is not only harmful for aquatic life but also mutagenic for human beings. In this study, we constructed transgenic rice expressing an Old Yellow Enzyme gene, ScOYE3, from Saccharomyces cerevisiae. The ScOYE3 transgenic plants were comprehensively investigated for their biochemical responses to 2-NA treatment and their 2-NA phytoremediation capabilities. Our results showed that the rice seedlings exposed to 2-NA stress, showed growth inhibition and biomass reduction. However, the transgenic plants exhibited strong tolerance to 2-NA stress compared to wild-type plants. Ectopic expression of ScOYE3 could effectively protect transgenic plants against 2-NA damage, which resulted in less reactive oxygen species accumulation in transgenic plants than that in wild-type plants. Our phytoremediation assay revealed that transgenic plants could eliminate more 2-NA from the medium than wild-type plants. Moreover, omics analysis was performed in order to get a deeper insight into the mechanism of ScOYE3-mediated 2-NA transformation in rice. Altogether, the function of ScOYE3 during 2-NA detoxification was characterized for the first time, which serves as strong theoretical support for the phytoremediation potential of 2-NA by Old Yellow Enzyme genes.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Hao Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| |
Collapse
|
3
|
Pan Z, Zhou C, Bai X, Wang F, Hong J, Fang JY, Huang Y, Sheng C. Discovery of New Fusobacterium nucleatum Inhibitors to Attenuate Migratory Capability of Colon Cancer Cells by the Drug Repositioning Strategy. J Med Chem 2023; 66:15699-15714. [PMID: 37983010 DOI: 10.1021/acs.jmedchem.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Recent studies revealed that intestinal microbiota played important roles in colorectal cancer (CRC) carcinogenesis. Particularly, Fusobacterium nucleatum was confirmed to promote the proliferation and metastasis of CRC. Therefore, targeting F. nucleatum may be a potential preventive and therapeutic approach for CRC. Herein, 2,272 off-patent drugs were screened inhibitory activity against F. nucleatum. Among the hits, nitisinone was identified as a promising anti-F. nucleatum lead compound. Further optimization of nitisinone led to the discovery of more potent derivatives. Particularly, compounds 19q and 22c showed potent anti-F. nucleatum activity (MIC50 = 1 and 2 μg/mL, respectively) with low cytotoxicity. Among them, compound 19q effectively attenuated the migratory ability of MC-38 cells induced by F. nucleatum. Preliminary mechanism studies suggested that nitisinone and its derivatives might act by downregulating nitroreductase and tryptophanase. Thus, the development of small molecule F. nucleatum inhibitors represents an effective strategy to treat CRC.
Collapse
Affiliation(s)
- Zhizhi Pan
- College of Pharmacy, Dali University, Xueren Road 2, Dali 671000, China
| | - Chenchen Zhou
- College of Pharmacy, Dali University, Xueren Road 2, Dali 671000, China
| | - Xuexin Bai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Fangfang Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yahui Huang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
4
|
Tian Y, Zhao G, Cheng M, Lu L, Zhang H, Huang X. A nitroreductase DnrA catalyzes the biotransformation of several diphenyl ether herbicides in Bacillus sp. Za. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12647-5. [PMID: 37395748 DOI: 10.1007/s00253-023-12647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Diphenyl ether herbicides, typical globally used herbicides, threaten the agricultural environment and the sensitive crops. The microbial degradation pathways of diphenyl ether herbicides are well studied, but the nitroreduction of diphenyl ether herbicides by purified enzymes is still unclear. Here, the gene dnrA, encoding a nitroreductase DnrA responsible for the reduction of nitro to amino groups, was identified from the strain Bacillus sp. Za. DnrA had a broad substrate spectrum, and the Km values of DnrA for different diphenyl ether herbicides were 20.67 μM (fomesafen), 23.64 μM (bifenox), 26.19 μM (fluoroglycofen), 28.24 μM (acifluorfen), and 36.32 μM (lactofen). DnrA also mitigated the growth inhibition effect on cucumber and sorghum through nitroreduction. Molecular docking revealed the mechanisms of the compounds fomesafen, bifenox, fluoroglycofen, lactofen, and acifluorfen with DnrA. Fomesafen showed higher affinities and lower binding energy values for DnrA, and residue Arg244 affected the affinity between diphenyl ether herbicides and DnrA. This research provides new genetic resources and insights into the microbial remediation of diphenyl ether herbicide-contaminated environments. KEY POINTS: • Nitroreductase DnrA transforms the nitro group of diphenyl ether herbicides. • Nitroreductase DnrA reduces the toxicity of diphenyl ether herbicides. • The distance between Arg244 and the herbicides is related to catalytic efficiency.
Collapse
Affiliation(s)
- Yanning Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guoqiang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Luyao Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hao Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
5
|
Pimviriyakul P, Kapaothong Y, Tangsupatawat T. Heterologous Expression and Characterization of a Full-length Protozoan Nitroreductase from Leishmania orientalis isolate PCM2. Mol Biotechnol 2023; 65:556-569. [PMID: 36042106 DOI: 10.1007/s12033-022-00556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
Leishmaniasis, a parasitic disease found in parts of the tropics and subtropics, is caused by Leishmania protozoa infection. Nitroreductases (NTRs), enzymes involved in nitroaromatic prodrug activation, are attractive targets for leishmaniasis treatment development. In this study, a full-length recombinant NTR from the Leishmania orientalis isolate PCM2 (LoNTR), which causes severe leishmaniasis in Thailand, was successfully expressed in soluble form using chaperone co-expression in Escherichia coli BL21(DE3). The purified histidine-tagged enzyme (His6-LoNTR) had a subunit molecular mass of 36 kDa with no cofactor bound; however, the addition of exogenous flavin (either FMN or FAD) readily increased its enzyme activity. Bioinformatics analysis found that the unique N-terminal sequences of LoNTR is only present in Leishmania where the addition of this region might result in the loss of flavin binding. Either NADH or NADPH can serve as an electron donor to transfer electrons to nitrofurazone; however, NADPH was preferred. Molecular oxygen was identified as an additional electron acceptor resulting in wasteful electrons from NADPH for the main catalysis. Steady-state kinetic experiments revealed a ping-pong mechanism for His6-LoNTR with Km,NADPH, Km,NFZ, and kcat of 28 µM, 68 µM, and 0.84 min-1, respectively. Besides nitroreductase activity, His6-LoNTR also has the ability to reduce quinone derivatives. The properties of full-length His6-LoNTR were different from previously reported protozoa and bacterial NTRs in many respects. This study provides information of NTR catalysis to be developed as a potential future therapeutic target to treat leishmaniasis.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Yuvarun Kapaothong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Theerapat Tangsupatawat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
6
|
Association of Midgut Bacteria and Their Metabolic Pathways with Zika Infection and Insecticide Resistance in Colombian Aedes aegypti Populations. Viruses 2022; 14:v14102197. [PMID: 36298752 PMCID: PMC9609292 DOI: 10.3390/v14102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.
Collapse
|
7
|
Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. Eur J Nucl Med Mol Imaging 2022; 49:2560-2583. [PMID: 35277741 DOI: 10.1007/s00259-022-05726-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/13/2022] [Indexed: 12/14/2022]
|
8
|
Flavin oxidation state impacts on nitrofuran antibiotic binding orientation in nitroreductases. Biochem J 2021; 478:3423-3428. [PMID: 34554213 DOI: 10.1042/bcj20210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Nitroreductases catalyse the NAD(P)H-dependent nitro reduction in nitrofuran antibiotics, which activates them into cytotoxic molecules leading to cell death. The design of new effective nitrofuran antibiotics relies on knowledge of the kinetic mechanism and nitrofuran binding mode of microbial nitroreductases NfsA and NfsB. This has been hampered by multiple co-crystallisation studies revealing ligand binding in non-electron transfer competent states. In a recent study by Day et al. (2021) the authors investigated the likely reaction mechanism and mode of nitrofurantoin binding to NfsA using potentiometry, global kinetics analysis, crystallography and molecular dynamics simulations. Their findings suggest nitrofurantoin reduction proceeds via a direct hydride transfer from reduced FMN, while the crystallographic binding orientation is an inhibitory complex. Molecular dynamics simulations suggest ligand binding orientations is dependent on the oxidation state of the FMN. This study highlights the importance of utilising computational studies alongside traditional crystallographic approaches, when multiple stable ligand binding orientations can occur.
Collapse
|
9
|
Structure and substrate specificity determinants of NfnB, a dinitroaniline herbicide-catabolizing nitroreductase from Sphingopyxis sp. strain HMH. J Biol Chem 2021; 297:101143. [PMID: 34473996 PMCID: PMC8484813 DOI: 10.1016/j.jbc.2021.101143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Nitroreductases are emerging as attractive bioremediation enzymes, with substrate promiscuity toward both natural and synthetic compounds. Recently, the nitroreductase NfnB from Sphingopyxis sp. strain HMH exhibited metabolic activity for dinitroaniline herbicides including butralin and pendimethalin, triggering the initial steps of their degradation and detoxification. However, the determinants of the specificity of NfnB for these herbicides are unknown. In this study, we performed structural and biochemical analyses of NfnB to decipher its substrate specificity. The homodimer NfnB is a member of the PnbA subgroup of the nitroreductase family. Each monomer displays a central α + β fold for the core domain, with a protruding middle region and an extended C-terminal region. The protruding middle region of Val75–Tyr129 represents a structural extension that is a common feature to members of the PnbA subgroup and functions as an opening wall connecting the coenzyme FMN-binding site to the surface, therefore serving as a substrate binding site. We performed mutational, kinetic, and structural analyses of mutant enzymes and found that Tyr88 in the middle region plays a pivotal role in substrate specificity by determining the dimensions of the wall opening. The mutation of Tyr88 to phenylalanine or alanine caused significant changes in substrate selectivity toward bulkier dinitroaniline herbicides such as oryzalin and isopropalin without compromising its activity. These results provide a framework to modify the substrate specificity of nitroreductase in the PnbA subgroup, which has been a challenging issue for its biotechnological and bioremediation applications.
Collapse
|
10
|
Streptococcus suis Encodes Multiple Allelic Variants of a Phase-Variable Type III DNA Methyltransferase, ModS, That Control Distinct Phasevarions. mSphere 2021; 6:6/3/e00069-21. [PMID: 33980672 PMCID: PMC8125046 DOI: 10.1128/msphere.00069-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is a causative agent of meningitis, polyarthritis, and polyserositis in swine, and it is a major cause of zoonotic meningitis in humans. Here, we investigate epigenetic gene regulation in S. suis by multiple phasevarions controlled by the phase-variable type III DNA methyltransferase ModS. Streptococcus suis is a significant cause of bacterial meningitis in humans, particularly in Southeast Asia, and is a leading cause of respiratory and invasive disease in pigs. Phase-variable DNA methyltransferases, associated with restriction-modification (R-M) systems, are a source of epigenetic gene regulation, controlling the expression of multiple genes. These systems are known as phasevarions (phase-variable regulons) and have been characterized in many host-adapted bacterial pathogens. We recently described the presence of a Type III DNA methyltransferase in S. suis, ModS, which contains a simple sequence repeat (SSR) tract within the open reading frame of the modS gene and which differed in length between individual strains. We also observed that multiple allelic variants of the modS gene were present in a population of S. suis isolates. Here, we demonstrate that a biphasic ON-OFF switching of expression occurs in the two most common ModS alleles, ModS1 and ModS2, and that switching is dependent on SSR tract length. Furthermore, we show using single-molecule real-time (SMRT) sequencing that ModS1 and ModS2 are active methyltransferases in S. suis. ON-OFF switching of each ModS allele results in the regulation of distinct phasevarions, with the ModS2 phasevarion impacting growth patterns and antibiotic resistance. This is the first demonstration of a phase-variable Type III DNA methyltransferase in a Gram-positive organism that controls a phasevarion. Characterizing the phenotypic effects of phasevarions in S. suis is key to understanding pathogenesis and the development of future vaccines. IMPORTANCEStreptococcus suis is a causative agent of meningitis, polyarthritis, and polyserositis in swine, and it is a major cause of zoonotic meningitis in humans. Here, we investigate epigenetic gene regulation in S. suis by multiple phasevarions controlled by the phase-variable Type III DNA methyltransferase ModS. This is the first characterized example of a Type III R-M system regulating a phasevarion in a Gram-positive organism. We demonstrate that biphasic ON-OFF switching of ModS expression results in differences in bacterial growth and antibiotic resistance. Understanding the effects of ModS phase variation is required to determine the stably expressed antigenic repertoire of S. suis, which will direct and inform the development of antimicrobial treatments and vaccines against this important pathogen.
Collapse
|