1
|
Feng X, Jia P, Zhang D. Nanocarrier drug delivery system: promising platform for targeted depression therapy. Front Pharmacol 2024; 15:1435133. [PMID: 39119603 PMCID: PMC11306052 DOI: 10.3389/fphar.2024.1435133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Depression is a chronic mental disorder characterized by persistent low mood and loss of interest. Treatments for depression are varied but may not be sufficient cure. Drug-based treatment regimens have drawbacks such as slow onset of action, low bioavailability, and drug side effects. Nanocarrier Drug Delivery Systems (NDDS) has received increasing attention for brain drug delivery since it assists the drug through the blood-brain barrier and improves bioavailability, which may be beneficial for treating depression. Due to the particle size and physicochemical properties of nanocarriers, it presents a promise to improve the stability and solubility of antidepressants, thereby enhancing the drug concentration. Moreover, ligand-modified nanocarriers can be taken as a target direct medicines release system and reduce drug side effects. The purpose of the present review is to provide an up-to-date understanding of the Nanocarrier drug delivery system and relevant antidepressants in different routes of ingestion, to lay a foundation for the treatment of patients with depression.
Collapse
Affiliation(s)
- Xiaoying Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Jia
- Department of Neurosurgery Nursing, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Duan M, Zhou D, Ke J, Chen Y, Wu W, Li Y, Ren J, Wang L, Zhang Z, Wang C. Dual targetable drug delivery system based on cell membrane camouflaged liposome for enhanced tumor targeting and improved anti-tumor efficiency. Colloids Surf B Biointerfaces 2024; 238:113892. [PMID: 38581834 DOI: 10.1016/j.colsurfb.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Receptor and ligand binding mediated targeted drug delivery systems (DDS) sometimes fail to target to tumor sites, and cancer cell membrane (CCM) coating can overcome the dilemma of immune clearance and nonspecific binding of DDS in vivo. In order to enhance the targeting ability and improve the anti-tumor effect, a dual targeting DDS was established based on U87MG CCM mediated homologous targeting and cyclic peptide RGD mediated active targeting. The DDS was prepared by coating RGD doped CCM onto doxorubicin (DOX) loaded liposomes. The homologous and active dual targeting ability endowed the DDS (RGD-CCM-LP-DOX) exhibited superior cancer cell affinity, improved tissue distribution and enhanced anti-tumor effects. In vivo pharmacodynamic studies revealed that RGD-CCM-LP-DOX exhibited superior therapeutic effect compared with homologous targeting CCM-LP-DOX and non-targetable LP-DOX injection. H&E staining, Ki 67 staining and TUNEL staining confirmed that RGD-CCM-LP-DOX not only increased anti-tumor efficacy, but also reduced tissue toxicity by changing the distribution in vivo. The experimental results showed that the RGD doped CCM camouflaged liposome DDS is a better choice for chemotherapeutics delivery.
Collapse
Affiliation(s)
- Meitao Duan
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China
| | - Dan Zhou
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, PR China
| | - Junfang Ke
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Yan Chen
- Department of Pharmacy, Xiang'an hospital of Xiamen University, Xiamen 361023, PR China
| | - Wenfeng Wu
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Yue Li
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Jungang Ren
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Li Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China.
| | - Chen Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China.
| |
Collapse
|
3
|
Rahman M, Afzal O, Ullah SNM, Alshahrani MY, Alkhathami AG, Altamimi ASA, Almujri SS, Almalki WH, Shorog EM, Alossaimi MA, Mandal AK, abdulrahman A, Sahoo A. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS OMEGA 2023; 8:48625-48649. [PMID: 38162753 PMCID: PMC10753706 DOI: 10.1021/acsomega.3c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shehla Nasar Mir
Najib Ullah
- Phyto
Pharmaceuticals Research Lab, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia
Hamdard University, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mohammad Y. Alshahrani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | | | - Salem Salman Almujri
- Department
of Pharmacology, College of Pharmacy, King
Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eman M. Shorog
- Department
of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Manal A Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashok Kumar Mandal
- Department
of Pharmacology, Faculty of Medicine, University
Malaya, Kuala Lumpur 50603, Malaysia
| | - Alhamyani abdulrahman
- Pharmaceuticals
Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Ankit Sahoo
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
4
|
Xu Y, Dong X, Xu H, Jiao P, Zhao LX, Su G. Nanomaterial-Based Drug Delivery Systems for Pain Treatment and Relief: From the Delivery of a Single Drug to Co-Delivery of Multiple Therapeutics. Pharmaceutics 2023; 15:2309. [PMID: 37765278 PMCID: PMC10537372 DOI: 10.3390/pharmaceutics15092309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The use of nanomaterials in drug delivery systems for pain treatment is becoming increasingly common. This review aims to summarize how nanomaterial-based drug delivery systems can be used to effectively treat and relieve pain, whether via the delivery of a single drug or a combination of multiple therapeutics. By utilizing nanoformulations, the solubility of analgesics can be increased. Meanwhile, controlled drug release and targeted delivery can be realized. These not only improve the pharmacokinetics and biodistribution of analgesics but also lead to improved pain relief effects with fewer side effects. Additionally, combination therapy is frequently applied to anesthesia and analgesia. The co-encapsulation of multiple therapeutics into a single nanoformulation for drug co-delivery has garnered significant interest. Numerous approaches using nanoformulation-based combination therapy have been developed and evaluated for pain management. These methods offer prolonged analgesic effects and reduced administration frequency by harnessing the synergy and co-action of multiple targets. However, it is important to note that these nanomaterial-based pain treatment methods are still in the exploratory stage and require further research to be effectively translated into clinical practice.
Collapse
Affiliation(s)
- Yuhang Xu
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xingpeng Dong
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Heming Xu
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Lin-Xia Zhao
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Gaoxing Su
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW, Guo DY. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int J Nanomedicine 2023; 18:4275-4311. [PMID: 37534056 PMCID: PMC10392909 DOI: 10.2147/ijn.s410688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Ya-Jun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jun-Bo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jia-Wen Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
6
|
Niu Q, Sun Q, Bai R, Zhang Y, Zhuang Z, Zhang X, Xin T, Chen S, Han B. Progress of Nanomaterials-Based Photothermal Therapy for Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:10428. [PMID: 36142341 PMCID: PMC9499573 DOI: 10.3390/ijms231810428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the top 15 most prevalent cancers worldwide. However, the current treatment models for OSCC (e.g., surgery, chemotherapy, radiotherapy, and combination therapy) present several limitations: damage to adjacent healthy tissue, possible recurrence, low efficiency, and severe side effects. In this context, nanomaterial-based photothermal therapy (PTT) has attracted extensive research attention. This paper reviews the latest progress in the application of biological nanomaterials for PTT in OSCC. We divide photothermal nanomaterials into four categories (noble metal nanomaterials, carbon-based nanomaterials, metal compounds, and organic nanomaterials) and introduce each category in detail. We also mention in detail the drug delivery systems for PTT of OSCC and briefly summarize the applications of hydrogels, liposomes, and micelles. Finally, we note the challenges faced by the clinical application of PTT nanomaterials and the possibility of further improvement, providing direction for the future research of PTT in OSCC treatment.
Collapse
Affiliation(s)
- Qin Niu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Qiannan Sun
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Rushui Bai
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Zimeng Zhuang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Si Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|