Moeinimaleki B, Kaatuzian H, Livani AM. Design and simulation of a plasmonic density nanosensor for polarizable gases.
APPLIED OPTICS 2022;
61:4735-4742. [PMID:
36255954 DOI:
10.1364/ao.457454]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/22/2022] [Indexed: 06/16/2023]
Abstract
In this paper, an optical method of measuring the mass density of polarizable gases is proposed using a plasmonic refractive index nano-sensor. Plasmonic sensors can detect very small changes in the refracting index of arbitrary dielectric materials. However, attributing them to a specific application needs more elaboration of the material's refractive index unit's (RIU) relation with the introduced application. In a gaseous medium, the optical properties of molecules are related to their dipole moment polarizability. Hence, the theoretical index-density relation of Lorentz-Lorenz is applied in the proposed sensing mechanism to interpret changes in the gas' refractive index and to changes in its density. The proposed plasmonic mass density sensor shows a sensitivity of 348.8nm/(gr/cm3) for methane gas in the visible light region. This sensor can be integrated with photonic circuits for gas sensing purposes.
Collapse