1
|
Fukuno S, Nagai K, Kurotobi A, Sahori Y, Nakagawa R, Nomura R, Ito T, Konishi H. Danazol increases the oral bioavailability of midazolam by inactivation of hepatic and intestinal CYP3A in rats. Xenobiotica 2023; 53:421-428. [PMID: 37640546 DOI: 10.1080/00498254.2023.2253314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Danazol (DNZ) is a synthetic androgen derivative used for the treatment of intractable hematological disorders. In this study, we investigated the effects of DNZ on CYP3A activity in hepatic and small intestinal microsomes and the pharmacokinetics of midazolam (MDZ), a typical substrate for CYP3A, in rats.MDZ 4-hydroxylation activities in hepatic and small intestinal microsomes significantly decreased 24 h after DNZ (100 mg/kg, i.p.) treatment. Time-dependent inactivation of MDZ 4-hydroxylation activities was noted when microsomes were pre-incubated with DNZ in the presence of a NADPH-generating system.The Western blot analysis indicated that the decrease observed in enzyme activity was not due to changes in the protein expression of CYP3A.In contrast to the intravenous administration, serum MDZ concentrations in DNZ-treated rats were markedly higher than those in control rats when administered orally. DNZ treatment increased MDZ oral bioavailability by approximately 2.5-folds.We herein demonstrated that DNZ increased the bioavailability of orally administered MDZ through irreversible inactivation of hepatic and intestinal CYP3A in rats.
Collapse
Affiliation(s)
- Shuhei Fukuno
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Katsuhito Nagai
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Akemi Kurotobi
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Yuki Sahori
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Ryo Nakagawa
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Rena Nomura
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Hiroki Konishi
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| |
Collapse
|
2
|
Evaluation of Zuo-Gui Yin Decoction Effects on Six CYP450 Enzymes in Rats Using a Cocktail Method by UPLC-MS/MS. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4293062. [PMID: 36060135 PMCID: PMC9439930 DOI: 10.1155/2022/4293062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Background. Zuo-Gui Yin Decoction (ZGYD), a traditional Chinese prescription, is mainly used in various kinds of andrology and gynecology diseases. However, the study on the interaction of ZGYD and drugs has not been reported. Therefore, evaluating the interaction between ZGYD and metabolic enzymes is helpful to guide rational drug use. Objective. This study was conducted to explore the effects of ZGYD on the activity and mRNA expressions of six Cytochrome P450 (CYP450) enzymes in rats and to provide a basis for its rational clinical use. Methods. Sprague-Dawley rats were randomly divided into control, ZGYD high, medium, and low-dose group (
). The concentrations of six probe substrates in plasma of rats in each group were determined by UPLC-MS/MS. In addition, RT-PCR and Western blot were used to determine the effects of ZGYD on the expression of CYP450 isoforms in the liver. Results. Compared with the control group, the main pharmacokinetic parameters AUC(0-t), AUC (0~∞), of omeprazole, dextromethorphan, and midazolam in the high-dose group were significantly decreased, while the CL of these were significantly increased. The gene expressions of CYP2C11 and CYP3A1 were upregulated in the ZGYD medium, high-dose group. The protein expression of CYP2C11 was upregulated in the high-dose group, and the protein expression of CYP3A1 was upregulated in the medium, high-dose group. Conclusion. The results showed that ZGYD exhibited the induction effects on CYP2C11 and CYP3A1 (CYP2C19 and CYP3A4 in humans) in rats. However, no significant change in CYP1A2, CYP2B1, CYP2C7, and CYP2D2 activities was observed. It would be useful for the safe and effective usage of ZGYD in clinic.
Collapse
|
3
|
Tanaka R, Suzuki Y, Watanabe H, Fujioka T, Hirata K, Shin T, Ando T, Ono H, Tatsuta R, Mimata H, Maruyama T, Itoh H. Association of CYP3A5 polymorphisms and parathyroid hormone with blood level of tacrolimus in patients with end-stage renal disease. Clin Transl Sci 2021; 14:2034-2042. [PMID: 34058078 PMCID: PMC8504850 DOI: 10.1111/cts.13065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/02/2022] Open
Abstract
Because tacrolimus is predominantly metabolized by CYP3A, the blood concentration/dose (C/D) ratio is affected by CYP3A5 polymorphism. Parathyroid hormone (PTH) expression increases in secondary hyperparathyroidism, which is frequently associated with end‐stage renal disease. Recently, PTH has been shown to downregulate CYP3A expression at mRNA level. In this study, we examined the influence of CYP3A5 polymorphism on and association of serum intact‐PTH (iPTH) level with blood tacrolimus concentration in patients with end‐stage renal disease just before kidney transplantation. Forty‐eight patients who satisfied the selection criteria were analyzed. Subjects were classified into two phenotype subgroups: CYP3A5 expressor (CYP3A5*1/*1 and *1/*3; n = 15) and CYP3A5 nonexpressor (CYP3A5*3/*3; n = 33). The blood tacrolimus C/D (per body weight) ratio was significantly lower in CYP3A5 expressors than that in CYP3A5 nonexpressors. A significant positive correlation was found between tacrolimus C/D and iPTH concentrations (r = 0.305, p = 0.035), and the correlation coefficient was higher after excluding 20 patients co‐administered CYP3A inhibitor or inducer (r = 0.428, p = 0.023). A multiple logistic regression analysis by stepwise selection identified CYP3A5 polymorphism and serum iPTH level as significant factors associated with tacrolimus C/D. These results may suggest the importance of dose design considering not only the CYP3A5 phenotype but also serum iPTH level when using tacrolimus in patients who undergo renal transplantation.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Fujioka
- Laboratory of Medical Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kenshiro Hirata
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Toshitaka Shin
- Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tadasuke Ando
- Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroyuki Ono
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| |
Collapse
|
4
|
Kojina M, Suzuki K, Nishiwaki A, Aiba T. Acute Peripheral Inflammation Increases Plasma Concentration of Hypoglycemic Agent Nateglinide with Decreased Hepatic Drug-Metabolizing Activity in Rats. Biol Pharm Bull 2021; 44:96-102. [PMID: 33390555 DOI: 10.1248/bpb.b20-00677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of inflammation on hypoglycemic agents were evaluated in male rats with acute peripheral inflammation (API). Nateglinide (NTG) was utilized as a model compound, since it is a hepatically-metabolized compound and its metabolism is mainly mediated by CYP 2C11 enzyme. In the experiments, rats were subjected to carrageenan injection into their hind paws for API induction, and the plasma concentration profiles of NTG were then examined. In addition, pooled liver microsomes were prepared from control and API rats, and the hepatic drug-metabolizing activity toward NTG and the hepatic expression of CYP2C11 protein were evaluated. It was shown that the plasma concentration of NTG following its intravenous administration decreases at a slower rate in API rats than that in control rats. It was also indicated in the incubation study with the liver microsomes that the hepatic drug-metabolizing activity toward NTG decreases in API rats. Additionally, it was revealed in Western immunoblotting that the hepatic expression of CYP2C11 protein decreases in API rats. These findings suggest that inflammation occurring in peripheral tissues brings about a decrease in hepatic NTG metabolism by suppressing the hepatic expression of CYP2C11 protein, causing an alteration of the plasma concentration profile of NTG with its impaired elimination.
Collapse
Affiliation(s)
- Moeko Kojina
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Keiichiro Suzuki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Akane Nishiwaki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Tetsuya Aiba
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
5
|
Doi M, Kajikawa N, Aiba T. Effects of dexamethasone to reverse decreased hepatic midazolam metabolism in rats with acute renal failure. Xenobiotica 2019; 50:506-514. [PMID: 31403362 DOI: 10.1080/00498254.2019.1655680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The inductive effects of dexamethasone on hepatic midazolam metabolism were examined in Wistar rats with acute renal failure (ARF) to clarify whether the ARF-related decrease in the hepatic expression of drug-metabolizing enzymes is caused by an impairment in the translation/polypeptide formation process.ARF was induced with intramuscular glycerol injection. Dexamethasone was orally administered. Pooled liver microsomes from five rats were prepared with ultracentrifugation for each of four groups, namely, control and ARF rats, control rats with dexamethasone treatment and ARF rats with dexamethasone treatment.Hepatic drug-metabolizing activity was examined in an incubation study with the microsomes, where midazolam was employed as a substrate of cytochrome P450 (CYP) 3A enzymes. The hepatic protein and mRNA expressions of CYP3A23/3A1 and 3A2 enzymes were also evaluated.With dexamethasone treatment, the hepatic metabolic rate of midazolam increased 1.4 times in control rats, while it increased 19.6 times in ARF rats, reflecting the greater induction of hepatic protein expressions of CYP3A enzymes in ARF rats than in control rats.The hepatic protein expression process for CYP3A23/3A1 and 3A2 responds well to dexamethasone treatment in ARF rats, indicating that the translation/polypeptide formation process is not impaired in the presence of ARF.
Collapse
Affiliation(s)
- Masami Doi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Noriko Kajikawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tetsuya Aiba
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Recovery of OATP1B Activity after Living Kidney Transplantation in Patients with End-Stage Renal Disease. Pharm Res 2019; 36:59. [DOI: 10.1007/s11095-019-2593-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
|
7
|
Okada A, Suzuki K, Hara K, Kojina M, Aiba T. In Vivo Study on Mechanism Underlying Increased Pharmacological Effects of Phenobarbital in Rats with Glycerol-Induced Acute Renal Failure. Biol Pharm Bull 2019; 42:501-506. [PMID: 30828081 DOI: 10.1248/bpb.b18-00659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The mechanism underlying the increased pharmacological effects of phenobarbital in rats with glycerol-induced acute renal failure (ARF) was examined. In the experiments, a surgical cannula was inserted in the lateral ventricle of the rats for phenobarbital infusion, and the ARF induction was performed by intramuscular administration of 50% glycerol. The onset time of anesthesia by phenobarbital was determined with the tail flick method. In addition, cerebral microsomes were prepared from excised cerebral cortices of sham and ARF rats, and the cerebral expression of the γ-aminobutyric acid (GABA)A receptor and two cation-chloride transporters, KCC2 and NKCC1, was evaluated by Western blotting, as their functions are involved in the anesthetic effects of phenobarbital. When phenobarbital was infused in the ventricle, anesthesia was induced 2.2-times faster in ARF rats than in sham rats, and there was no detectable increase in the cerebral expression of the GABAA receptor in ARF rats. It was additionally noted that the cerebral expression of KCC2 decreased, whereas that of NKCC1 was unaltered in ARF rats. These findings indicated that the anesthetic effects of phenobarbital are potentiated in ARF rats, probably due to imbalanced cerebral expression of KCC2 and NKCC1, suggesting that altered cation-chloride handling in nerve cells is associated.
Collapse
Affiliation(s)
- Atsuyoshi Okada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Keiichiro Suzuki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Keisuke Hara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Moeko Kojina
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Tetsuya Aiba
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
8
|
Hori Y, Shimizu Y, Aiba T. Altered hepatic drug-metabolizing activity in rats suffering from hypoxemia with experimentally induced acute lung impairment. Xenobiotica 2017; 48:576-583. [PMID: 28665167 DOI: 10.1080/00498254.2017.1349969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Hepatic drug-metabolizing activity was investigated in vitro with liver microsomes prepared from rats suffering from hypoxemia with experimentally induced acute lung impairment (ALI). 2. Male Wistar rats received an intrabronchial administration of dilute hydrochloride solution for ALI induction. Pooled liver microsomes were prepared for the normal and ALI rats, and the hepatic drug metabolism mediated by cytochrome P450 (CYP) 3 A was examined in an incubation study with the microsomes. 3. The NADPH-dependent metabolism of midazolam significantly increases in ALI rats as compared with that in normal rats. Testosterone 6β-hydroxylation was also observed to significantly increase in ALI rats. 4. When the hepatic expression of CYP3A proteins was examined, the protein expression of CYP3A1 was shown to significantly increase and that of CYP3A2 remained unaltered in ALI rats. The hepatic expression of NADPH-cytochrome P450 reductase (POR), a protein mediating electron transfer in CYP-mediated drug metabolism, was also revealed to significantly increases in ALI rats. 5. With the findings regarding the midazolam elimination, the hepatic drug-metabolizing activity seems to increase in response to acute hypoxemia, partly due to an altered expression of the CYP3A enzymes, and an augmented electron transfer with an increased POR expression is probably involved in the increase.
Collapse
Affiliation(s)
- Yuki Hori
- a Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Yasumasa Shimizu
- a Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Tetsuya Aiba
- a Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| |
Collapse
|
9
|
Sun Z, Zhang Z, Ji M, Yang H, Cromie M, Gu J, Wang C, Yang L, Yu Y, Gao W, Wang SL. BDE47 induces rat CYP3A1 by targeting the transcriptional regulation of miR-23b. Sci Rep 2016; 6:31958. [PMID: 27546062 PMCID: PMC4992956 DOI: 10.1038/srep31958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/01/2016] [Indexed: 01/17/2023] Open
Abstract
Cytochrome P450 3A (CYP3A) is the most abundant CYP450 enzyme in the liver and is involved in the metabolism of over 50% of xenobiotics. Our previous studies revealed that 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) could induce rat CYP3A1 expression, but the molecular basis remains unclear. Using in silico analysis, we identified a potential miR-23b recognition element (MRE23b) in the 3′-UTR region of CYP3A1 mRNA, which was verified by the luciferase assay. The miR-23b mimic and inhibitor significantly down- and up-regulated the expression of CYP3A1, respectively. Additionally, BDE47 significantly down-regulated the expression of miR-23b in rats and in hepatic H4IIE cells. Induction or blockage of CYP3A1 by a miR-23b inhibitor or mimic could correspondingly alter BDE47-induced expression of CYP3A1 and cytotoxicity in H4IIE cells. Furthermore, LV-anti-miR-23b significantly decreased endogenous levels of miR-23b and increased the expression and activity of CYP3A1 in rat liver. LV-anti-miR-23b also significantly increased the hydroxylated metabolites of BDE47 (3-OH-BDE47, 4-OH-BDE42, and 4′-OH-BDE49) in rat serum. In conclusion, we first found that BDE47 induced rat CYP3A1 expression by targeting the transcriptional regulation of miR-23b. This study helps provide a better understanding of CYP3A regulation and offers novel clues for the role of miRNAs in the metabolism and distribution of environmental pollutants.
Collapse
Affiliation(s)
- Zhenzhen Sun
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,Key Laboratory of Pediatrics, Nanjing Children's Hospital Affiliated to Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, P. R. China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, P. R. China
| | - Meghan Cromie
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 Gilbert Drive, Lubbock, TX 79416, USA
| | - Jun Gu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Lu Yang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Yongquan Yu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 Gilbert Drive, Lubbock, TX 79416, USA
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| |
Collapse
|
10
|
Huang L, Liu J, Yu X, Shi L, Liu J, Xiao H, Huang Y. Drug-drug interactions between moxifloxacin and rifampicin based on pharmacokinetics in vivo in rats. Biomed Chromatogr 2016; 30:1591-8. [PMID: 27028459 DOI: 10.1002/bmc.3726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 01/18/2023]
Abstract
Moxifloxacin and rifampicin are all the first-line options for the treatment of active tuberculosis, which are often combined for the treatment of multidrug resistance pulmonary tuberculosis in clinic. However, the potential drug-drug interactions between moxifloxacin and rifampicin were unknown. The aim of this study was to investigate the drug-drug interactions between moxifloxacin and rifampicin based on their pharmacokinetics in vivo after oral administration of the single drug and both drugs, and reveal their mutual effects on their pharmacokinetics. Eighteen male Sprague-Dawley rats were randomly assigned to three groups: moxifloxacin group, rifampicin group and moxifloxacin + rifampicin group. Plasma concentrations of moxifloxacin and rifampicin were determined using LC-MS at the designated time points after drug administration, and the main pharmacokinetic parameters were calculated. In addition, effects of moxifloxacin and rifampicin on their metabolic rate and absorption were investigated using rat liver microsome incubation systems and Caco-2 cell transwell model. The main pharmacokinetic parameters of moxifloxacin including Tmax , Cmax , t1/2 and AUC(0-t) increased more in the moxifloxacin + rifampicin group than in the moxifloxacin group, but the difference was not significant (p > 0.05). However, the pharmacokinetic parameters of rifampicin, including peak concentration, area under the concentration-time curve, half-life and the area under the first moment plasma concentration-time curve, increased significantly (p < 0.05) compared with the rifampicin group, and the time to peak concentration decreased significantly (p < 0.05). The mean residence time of rifampicin also increased in moxifloxacin + rifampicin group compared with the rifampicin group, but the difference was not significant (p > 0.05). The rat liver microsome incubation experiment indicated that moxifloxacin could increase the metabolic rate of rifampicin from 23.7 to 38.7 min. However, the Caco-2 cell transwell experiment showed that moxifloxacin could not affect the absorption rate of rifampicin. These changes could enhance the drug efficacy, but they could also cause drug accumulation, which might induce adverse effect, so it was suggested that the drug dosage should be adjusted and the drug concentration in plasma should be monitored if moxifloxacin and rifampicin are co-administered. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lifei Huang
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiajun Liu
- Shanghai Jiao Tong University School of Medicine (2011 eight-year program), Shanghai, People's Republic of China
| | - Xin Yu
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Shi
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jian Liu
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Heping Xiao
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yi Huang
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Suzuki Y, Fujioka T, Sato F, Matsumoto K, Muraya N, Tanaka R, Sato Y, Ohno K, Mimata H, Kishino S, Itoh H. CYP3A5 polymorphism affects the increase in CYP3A activity after living kidney transplantation in patients with end stage renal disease. Br J Clin Pharmacol 2015; 80:1421-8. [PMID: 26773964 DOI: 10.1111/bcp.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 02/06/2023] Open
Abstract
AIMS It has been reported that cytochrome P450 (CYP)3A activity increases significantly in patients with end stage renal disease (ESRD) after kidney transplantation, with wide interindividual variability in the degree of increase. The aim of this study was to evaluate the influence of CYP3A5 polymorphism on the increase in CYP3A activity after living kidney transplantation, by measuring the plasma concentration of 4β-hydroxycholesterol. METHODS This prospective study recruited 22 patients with ESRD who underwent a first living kidney allograft transplantation, comprising 12 patients with CYP3A5*1 allele (CYP3A5*1/*1 or *1/*3) and 10 patients without CYP3A5*1 allele (CYP3A5*3/*3). RESULTS No significant difference in estimated glomerular filtration rate over time was observed between patients with the CYP3A5*1 allele and patients without the CYP3A5*1 allele, suggesting that the degrees of recovery in renal function after living kidney transplantation were similar in the two groups. However, plasma concentrations of 4β-hydroxycholesterol on days 90 (57.1 ± 13.4 vs. 39.5 ± 10.8 ng ml(-1)) and 180 (55.0 ± 14.5 vs. 42.4 ± 12.6 ng ml(-1)) after living kidney transplantation were significantly higher in the presence of the CYP3A5*1 allele than in the absence of the CYP3A5*1 allele [P = 0.0034 (95% confidence interval of difference 6.55, 28.6) and P = 0.043 (95% confidence interval of difference 0.47, 24.8), respectively], suggesting that CYP3A activity may increase markedly associated with recovery of renal function in patients with the CYP3A5*1 allele. CONCLUSIONS These findings suggest that the presence of the CYP3A5*1 allele contributes to marked elevation of CYP3A activity associated with recovery of renal function after kidney transplantation.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, 879-5593
| | - Takashi Fujioka
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, 879-5593
| | - Fuminori Sato
- Department of Urology, Faculty of Medicine, Oita University, Hasama-machi, Oita, 879-5593
| | - Kunihiro Matsumoto
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Nanako Muraya
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, 879-5593
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, 879-5593
| | - Yuhki Sato
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, 879-5593
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine, Oita University, Hasama-machi, Oita, 879-5593
| | - Satoshi Kishino
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, 879-5593
| |
Collapse
|
12
|
Lalande L, Charpiat B, Leboucher G, Tod M. Consequences of renal failure on non-renal clearance of drugs. Clin Pharmacokinet 2015; 53:521-32. [PMID: 24861189 DOI: 10.1007/s40262-014-0146-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Kidney disease not only alters the renal elimination but also the non-renal disposition of drugs that are metabolized by the liver. Indeed, modifications in the expression and activity of intestinal and hepatic drug metabolism enzymes and uptake and efflux transporters have been reported. Accumulated uremic toxins, inflammatory cytokines, and parathyroid hormones may modulate these proteins either directly or by inhibiting gene expression. This can lead to important unintended variations in exposure and response when drugs are administered without dose adjustment for reduced renal function. This review summarizes our current understanding of non-renal clearance in circumstances of chronic and acute renal failure with experimental but also clinical studies. It also evaluates the clinical impact on drug disposition. Predicting the extent of the drug disposition modification is difficult first because of the complex interplay between metabolic enzymes and transport proteins but also because of the differential effects in the different organs (liver, intestines). Recommendations of the US FDA are presented as they may be potentially helpful tools to predict these modifications when no specific pharmacokinetic studies are available.
Collapse
Affiliation(s)
- Laure Lalande
- Department of Pharmacy, Groupement Hospitalier Nord, Hospices Civils de Lyon, 103 Grande Rue de la Croix Rousse, 69317, Lyon Cedex 04, France,
| | | | | | | |
Collapse
|
13
|
Kajikawa N, Doi M, Kusaba JI, Aiba T. Effect of Carrageenan-induced Acute Peripheral Inflammation on the Pharmacokinetics and Hepatic Metabolism of Midazolam in Rats. Drug Metab Pharmacokinet 2014; 29:400-6. [DOI: 10.2133/dmpk.dmpk-14-rg-020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Suzuki Y, Itoh H, Fujioka T, Sato F, Kawasaki K, Sato Y, Sato Y, Ohno K, Mimata H, Kishino S. Association of Plasma Concentration of 4β-Hydroxycholesterol with CYP3A5 Polymorphism and Plasma Concentration of Indoxyl Sulfate in Stable Kidney Transplant Recipients. Drug Metab Dispos 2013; 42:105-10. [DOI: 10.1124/dmd.113.054171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Suzuki Y, Itoh H, Sato F, Kawasaki K, Sato Y, Fujioka T, Sato Y, Ohno K, Mimata H, Kishino S. Significant increase in plasma 4β-hydroxycholesterol concentration in patients after kidney transplantation. J Lipid Res 2013; 54:2568-72. [PMID: 23833241 DOI: 10.1194/jlr.p040022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several previous studies have shown that renal failure decreases not only renal elimination but also metabolic clearance of drugs, particularly those metabolized by CYP3A. However, whether recovery of renal function results in recovery of hepatic CYP3A activity remains unknown. In this study, we evaluated the effect of renal function on CYP3A activity after kidney transplantation in patients with end-stage renal disease (ESRD) by measuring the change in CYP3A activity using plasma concentration of 4β-hydroxycholesterol as a biomarker. The study enrolled 13 patients with ESRD who underwent the first kidney allograft transplantation. Morning blood samples were collected before and 3, 7, 10, 14, 21, 30, 60, 90, 120, 150 and 180 days after kidney transplantation. Plasma concentration of 4β-hydroxycholesterol was measured using GC-MS. Compared with before kidney transplantation, creatinine clearance increased significantly from day 3 after kidney transplantation and stabilized thereafter. Plasma concentration of 4β-hydroxycholesterol was elevated significantly on days 90 and 180 after kidney transplantation. In conclusion, this study suggests the recovery of CYP3A activity with improvement in renal function after kidney transplantation in patients with ESRD.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Clinical Pharmacy Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Murakami Y, Shimizu Y, Ogasawara A, Ueshima S, Nakayama M, Kawata K, Kakuta H, Aiba T. Interspecies comparison of hepatic metabolism of six newly synthesized retinoid X receptor agonistic compounds possessing a 6-[N-ethyl-N-(alkoxyisopropylphenyl)amino]nicotinic acid skeleton in rat and human liver microsomes. Drug Dev Ind Pharm 2013; 40:1065-71. [DOI: 10.3109/03639045.2013.807278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|