1
|
Phogole CM, Hastie R, Kellermann T. A simple and sensitive LC-MS/MS method for the quantitation of sertraline and N-desmethylsertraline in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123827. [PMID: 37490838 DOI: 10.1016/j.jchromb.2023.123827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
A simple and sensitive LC-MS/MS method for the simultaneous quantification of the second-generation antidepressant sertraline, and its active metabolite, N-desmethylsertraline, in human plasma was developed and validated. The analytes were extracted from 200 µL human plasma using a simple protein precipitation method. A gradient elution mode of water and 0.1% formic acid and acetonitrile was used for chromatographic separation on a Poroshell EC-C18 column (3 × 100 mm, 2.7 µm) at a flow rate of 0.450 mL/min. MS/MS analysis was performed in positive ionization mode using the transitions of m/z 306.1 → 159.1, 309.1 → 275.2, 292.1 → 159.1, and 296.2 → 279.0 for sertraline, sertraline-d3, N-desmethylsertraline, and N-desmethylsertraline-d4, respectively. The calibration curves for sertraline and N-desmethylsertraline in human plasma ranged from 2.50-320 ng/mL and 10.0-1280 ng/mL, respectively, with correlation coefficients (r) of ≥ 0.9992. The intra- and inter-assay precisions for both analytes at four concentrations (LLOQ, QCL, QCM, and QCH) ranged between 2.2% and 12.2%, respectively, while their accuracies ranged between 92.0 and 111.7%, with the exception of LLOQ, which ranged between 84.3 and 106.0%. The mean percentage recovery and process efficiency at three concentrations (QCL, QCM, and QCH) was 94.2 and 87.9% for sertraline, and 95.7 and 95.2% for N-desmethylsertraline, respectively. Both analytes were stable in plasma at room temperature for 2 h, at -80 °C for 28 days and through three freeze/thaw cycles. This method was successfully applied to a clinical study investigating the use of sertraline during pregnancy.
Collapse
Affiliation(s)
- Cassius M Phogole
- Division of Clinical Pharmacology, Department of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Roxanne Hastie
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Australia
| | - Tracy Kellermann
- Division of Clinical Pharmacology, Department of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
2
|
Khan D, Badhan R, Kirby DJ, Bryson S, Shah M, Mohammed AR. Virtual Clinical Trials Guided Design of an Age-Appropriate Formulation and Dosing Strategy of Nifedipine for Paediatric Use. Pharmaceutics 2023; 15:pharmaceutics15020556. [PMID: 36839878 PMCID: PMC9961156 DOI: 10.3390/pharmaceutics15020556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
The rapid onset of action of nifedipine causes a precipitous reduction in blood pressure leading to adverse effects associated with reflex sympathetic nervous system (SNS) activation, including tachycardia and worsening myocardial and cerebrovascular ischemia. As a result, short acting nifedipine preparations are not recommended. However, importantly, there are no modified release preparations of nifedipine authorised for paediatric use, and hence a paucity of clinical studies reporting pharmacokinetics data in paediatrics. Pharmacokinetic parameters may differ significantly between children and adults due to anatomical and physiological differences, often resulting in sub therapeutic and/or toxic plasma concentrations of medication. However, in the field of paediatric pharmacokinetics, the use of pharmacokinetic modelling, particularly physiological-based pharmacokinetics (PBPK), has revolutionised the ability to extrapolate drug pharmacokinetics across age groups, allowing for pragmatic determination of paediatric plasma concentrations to support drug licensing and clinical dosing. In order to pragmatically assess the translation of resultant dissolution profiles to the paediatric populations, virtual clinical trials simulations were conducted. In the context of formulation development, the use of PBPK modelling allowed the determination of optimised formulations that achieved plasma concentrations within the target therapeutic window throughout the dosing strategy. A 5 mg sustained release mini-tablet was successfully developed with the duration of release extending over 24 h and an informed optimised dosing strategy of 450 µg/kg twice daily. The resulting formulation provides flexible dosing opportunities, improves patient adherence by reducing frequent administration burden and enhances patient safety profiles by maintaining efficacious levels of consistent drug plasma levels over a sustained period of time.
Collapse
Affiliation(s)
- Dilawar Khan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Raj Badhan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Daniel J. Kirby
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Simon Bryson
- Proveca Ltd., No. 1 Spinningfields, Quay Street, Manchester M3 3JE, UK
| | - Maryam Shah
- Proveca Ltd., No. 1 Spinningfields, Quay Street, Manchester M3 3JE, UK
| | - Afzal Rahman Mohammed
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Correspondence:
| |
Collapse
|
3
|
Burhanuddin K, Badhan R. Optimising Fluvoxamine Maternal/Fetal Exposure during Gestation: A Pharmacokinetic Virtual Clinical Trials Study. Metabolites 2022; 12:metabo12121281. [PMID: 36557319 PMCID: PMC9782298 DOI: 10.3390/metabo12121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Fluvoxamine plasma concentrations have been shown to decrease throughout pregnancy. CYP2D6 polymorphisms significantly influence these changes. However, knowledge of an optimum dose adjustment according to the CYP2D6 phenotype is still limited. This study implemented a physiologically based pharmacokinetic modelling approach to assess the gestational changes in fluvoxamine maternal and umbilical cord concentrations. The optimal dosing strategies during pregnancy were simulated, and the impact of CYP2D6 phenotypes on fluvoxamine maternal and fetal concentrations was considered. A significant decrease in fluvoxamine maternal plasma concentrations was noted during gestation. As for the fetal concentration, a substantial increase was noted for the poor metabolisers (PM), with a constant level in the ultrarapid (UM) and extensive (EM) metabolisers commencing from gestation week 20 to term. The optimum dosing regimen suggested for UM and EM reached a maximum dose of 300 mg daily at gestational weeks (GW) 15 and 35, respectively. In contrast, a stable dose of 100 mg daily throughout gestation for the PM is sufficient to maintain the fluvoxamine plasma concentration within the therapeutic window (60-230 ng/mL). Dose adjustment during pregnancy is required for fluvoxamine, particularly for UM and EM, to maintain efficacy throughout the gestational period.
Collapse
|
4
|
Poweleit EA, Cinibulk MA, Novotny SA, Wagner-Schuman M, Ramsey LB, Strawn JR. Selective Serotonin Reuptake Inhibitor Pharmacokinetics During Pregnancy: Clinical and Research Implications. Front Pharmacol 2022; 13:833217. [PMID: 35281909 PMCID: PMC8916222 DOI: 10.3389/fphar.2022.833217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Pregnancy and associated physiologic changes affect the pharmacokinetics of many medications, including selective serotonin reuptake inhibitors—the first-line pharmacologic interventions for depressive and anxiety disorders. During pregnancy, SSRIs exhibit extensive pharmacokinetic variability that may influence their tolerability and efficacy. Specifically, compared to non-pregnant women, the activity of cytochrome P450 (CYP) enzymes that metabolize SSRIs drastically changes (e.g., decreased CYP2C19 activity and increased CYP2D6 activity). This perspective examines the impact of pharmacokinetic genes—related to CYP activity on SSRI pharmacokinetics during pregnancy. Through a simulation-based approach, plasma concentrations for SSRIs metabolized primarily by CYP2C19 (e.g., escitalopram) and CYP2D6 (e.g., fluoxetine) are examined and the implications for dosing and future research are discussed.
Collapse
Affiliation(s)
- Ethan A. Poweleit
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Margaret A. Cinibulk
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sarah A. Novotny
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Mississippi, Jackson, MS, United States
| | - Melissa Wagner-Schuman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Laura B. Ramsey
- Department of Pediatrics, Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jeffrey R. Strawn
- Department of Pediatrics, Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
- Department of Pediatrics, Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- *Correspondence: Jeffrey R. Strawn,
| |
Collapse
|