1
|
Ma B, Yang K, Li X, Su N, Yu T, Zou Y, Xu X, Wang F, Cheng J, Yan Z, Chen T, Zhang L. Factors Influencing Plasma Concentrations of Valproic Acid in Pediatric Patients With Epilepsy and the Clinical Significance of CYP2C9 Genotypes in Personalized Valproic Acid Therapy. Ther Drug Monit 2024; 46:503-511. [PMID: 38287884 DOI: 10.1097/ftd.0000000000001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND The aim of this study was to investigate the factors affecting plasma valproic acid (VPA) concentration in pediatric patients with epilepsy and the clinical significance of CYP2C9 gene polymorphisms in personalized dosing using therapeutic drug monitoring and pharmacogenetic testing. METHODS The medical records of children with epilepsy who underwent therapeutic drug monitoring at our institution between July 2022 and July 2023 and met the inclusion criteria were reviewed. Statistical analysis was performed to determine whether age, sex, blood ammonia, liver function, kidney function, and other characteristics affected the concentration-to-dose ratio of VPA (CDRV) in these patients. To investigate the effect of CYP2C9 polymorphisms on CDRV, DNA samples were collected from patients and the CYP2C9 genotypes were identified using real-time quantitative PCR. RESULTS The mean age of 208 pediatric patients with epilepsy was 5.50 ± 3.50 years. Among these patients, 182 had the CYP2C9 *1/*1 genotype, with a mean CDRV (mcg.kg/mL.mg) of 2.64 ± 1.46, 24 had the CYP2C9 *1/*3 genotype, with a mean CDRV of 3.28 ± 1.74, and 2 had the CYP2C9 *3/*3 genotype, with a mean CDRV of 6.46 ± 3.33. There were statistical differences among these 3 genotypes ( P < 0.05). The CDRV in these patients were significantly influenced by age, aspartate aminotransferase, total bilirubin, direct bilirubin, globulin, albumin/globulin ratio, prealbumin, creatinine, and CYP2C9 polymorphisms. In addition, multivariate linear regression analysis identified total bilirubin, direct bilirubin, and CYP2C9 polymorphisms as independent risk factors for high CDRV. CONCLUSIONS Liver problems and mutations in the CYP2C9 gene increase VPA levels. This underscores the importance of considering these factors when prescribing VPA to children with epilepsy, thereby enhancing the safety and efficacy of the therapy.
Collapse
Affiliation(s)
- Bingsuo Ma
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China; and
| | - Kun Yang
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China; and
| | - Xinping Li
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Ning Su
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China; and
| | - Ting Yu
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China; and
| | - Yan Zou
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China; and
| | - Xingmeng Xu
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Fei Wang
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Jingdong Cheng
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Zijun Yan
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Liangming Zhang
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| |
Collapse
|
2
|
Yang H, You L, Wang Z, Yang L, Wang X, Wu W, Zhi H, Rong G, Sheng Y, Liu X, Liu L. Bile duct ligation elevates 5-HT levels in cerebral cortex of rats partly due to impairment of brain UGT1A6 expression and activity via ammonia accumulation. Redox Biol 2024; 69:103019. [PMID: 38163420 PMCID: PMC10794929 DOI: 10.1016/j.redox.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
Hepatic encephalopathy (HE) is often associated with endogenous serotonin (5-HT) disorders. However, the reason for elevated brain 5-HT levels due to liver failure remains unclear. This study aimed to investigate the mechanism by which liver failure increases brain 5-HT levels and the role in behavioral abnormalities in HE. Using bile duct ligation (BDL) rats as a HE model, we verified the elevated 5-HT levels in the cortex but not in the hippocampus and striatum, and found that this cortical 5-HT overload may be caused by BDL-mediated inhibition of UDP-glucuronosyltransferase 1A6 (UGT1A6) expression and activity in the cortex. The intraventricular injection of the UGT1A6 inhibitor diclofenac into rats demonstrated that the inhibition of brain UGT1A6 activity significantly increased cerebral 5-HT levels and induced HE-like behaviors. Co-immunofluorescence experiments demonstrated that UGT1A6 is primarily expressed in astrocytes. In vitro studies confirmed that NH4Cl activates the ROS-ERK pathway to downregulate UGT1A6 activity and expression in U251 cells, which can be reversed by the oxidative stress antagonist N-acetyl-l-cysteine and the ERK inhibitor U0126. Silencing Hepatocyte Nuclear Factor 4α (HNF4α) suppressed UGT1A6 expression whilst overexpressing HNF4α increased Ugt1a6 promotor activity. Meanwhile, both NH4Cl and the ERK activator TBHQ downregulated HNF4α and UGT1A6 expression. In the cortex of hyperammonemic rats, we also found activation of the ROS-ERK pathway, decreases in HNF4α and UGT1A6 expression, and increases in brain 5-HT content. These results prove that the ammonia-mediated ROS-ERK pathway activation inhibits HNF4α expression to downregulate UGT1A6 expression and activity, thereby increasing cerebral 5-HT content and inducing manic-like HE symptoms. This is the first study to reveal the mechanism of elevated cortical 5-HT concentration in a state of liver failure and elucidate its association with manic-like behaviors in HE.
Collapse
Affiliation(s)
- Hanyu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009, Nanjing, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 210009, Nanjing, China
| | - Zhongyan Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xun Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenhan Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangmei Rong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Sheng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaodong Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009, Nanjing, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009, Nanjing, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Shnayder NA, Grechkina VV, Khasanova AK, Bochanova EN, Dontceva EA, Petrova MM, Asadullin AR, Shipulin GA, Altynbekov KS, Al-Zamil M, Nasyrova RF. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites 2023; 13:metabo13010134. [PMID: 36677060 PMCID: PMC9862929 DOI: 10.3390/metabo13010134] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington's disease, Parkinson's disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: β-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient's pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Aiperi K. Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Elena N. Bochanova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Evgenia A. Dontceva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 45000 Ufa, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, 119121 Moscow, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 11798 Moscow, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| |
Collapse
|