1
|
Mohammed I, Sagurthi SR. Current Approaches and Strategies Applied in First-in-class Drug Discovery. ChemMedChem 2025; 20:e202400639. [PMID: 39648151 DOI: 10.1002/cmdc.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
First-in-class drug discovery (FICDD) offers novel therapies, new biological targets and mechanisms of action (MOAs) toward targeting various diseases and provides opportunities to understand unexplored biology and to target unmet diseases. Current screening approaches followed in FICDD for discovery of hit and lead molecules can be broadly categorized and discussed under phenotypic drug discovery (PDD) and target-based drug discovery (TBDD). Each category has been further classified and described with suitable examples from the literature outlining the current trends in screening approaches applied in small molecule drug discovery (SMDD). Similarly, recent applications of functional genomics, structural biology, artificial intelligence (AI), machine learning (ML), and other such advanced approaches in FICDD have also been highlighted in the article. Further, some of the current medicinal chemistry strategies applied during discovery of hits and optimization studies such as hit-to-lead (HTL) and lead optimization (LO) have been simultaneously overviewed in this article.
Collapse
Affiliation(s)
- Idrees Mohammed
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Someswar Rao Sagurthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, Telangana, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
2
|
Barresi E, Robello M, Baglini E, Poggetti V, Viviano M, Salerno S, Da Settimo F, Taliani S. Indol-3-ylglyoxylamide as Privileged Scaffold in Medicinal Chemistry. Pharmaceuticals (Basel) 2023; 16:997. [PMID: 37513909 PMCID: PMC10386336 DOI: 10.3390/ph16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, indolylglyoxylamide-based derivatives have received much attention due to their application in drug design and discovery, leading to the development of a wide array of compounds that have shown a variety of pharmacological activities. Combining the indole nucleus, already validated as a "privileged structure," with the glyoxylamide function allowed for an excellent template to be obtained that is suitable to a great number of structural modifications aimed at permitting interaction with specific molecular targets and producing desirable therapeutic effects. The present review provides insight into how medicinal chemists have elegantly exploited the indolylglyoxylamide moiety to obtain potentially useful drugs, with a particular focus on compounds exhibiting activity in in vivo models or reaching clinical trials. All in all, this information provides exciting new perspectives on existing data that can be useful in further design of indolylglyoxylamide-based molecules with interesting pharmacological profiles. The aim of this report is to present an update of collection data dealing with the employment of this moiety in the rational design of compounds that are able to interact with a specific target, referring to the last 20 years.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco Robello
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
3
|
Robello M, Barresi E, Baglini E, Salerno S, Taliani S, Settimo FD. The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. J Med Chem 2021; 64:3508-3545. [PMID: 33764065 PMCID: PMC8154582 DOI: 10.1021/acs.jmedchem.0c01808] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the years, researchers in drug discovery have taken advantage of the use of privileged structures to design innovative hit/lead molecules. The α-ketoamide motif is found in many natural products, and it has been widely exploited by medicinal chemists to develop compounds tailored to a vast range of biological targets, thus presenting clinical potential for a plethora of pathological conditions. The purpose of this perspective is to provide insights into the versatility of this chemical moiety as a privileged structure in drug discovery. After a brief analysis of its physical-chemical features and synthetic procedures to obtain it, α-ketoamide-based classes of compounds are reported according to the application of this motif as either a nonreactive or reactive moiety. The goal is to highlight those aspects that may be useful to understanding the perspectives of employing the α-ketoamide moiety in the rational design of compounds able to interact with a specific target.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
4
|
Zhang Q, Zhang X, Liu Y, Wan C, Sun Y, Zhang L. In vitro Identification of Spinosin Metabolites in Human Liver Microsomes Using a Simple and Sensitive UHPLC-Q-TOF-MS/MS Method. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666181003141210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Spinosin is one of the major bioactive constituents among the total flavonoids
in semen ziziphi spinosae, which has sedation and hypnosis actions.
Methods:
A simple and rapid high-resolution ultra-high-performance liquid chromatography coupled
with a quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was developed and
validated for predicting the structures of its spinosin metabolic products. This paper presents the first
research focused on the metabolites of spinosin in human liver microsomes.
Results:
Based on the analytical strategy, 8 spinosin metabolites were detected in human liver microsome
incubation samples, and the metabolic pathways required to generate these metabolites were proposed.
However, no phase II metabolites were found. The cytochrome P450 enzyme is the main metabolic
enzyme involved in drug metabolism, accounting for approximately 75% of the total number of
different metabolic reactions.
Conclusion:
The in vitro metabolism of spinosin was proposed. These results allow us to learn about
spinosin metabolism, leading to a better understanding of drug biotransformation and providing a basis
for clinical applications. Moreover, this study laid the foundation for developing new pharmaceutical
drugs.
Collapse
Affiliation(s)
- Qiaoyue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy Hebei Medical University, Shijiazhuang, China
| | - Xia Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy Hebei Medical University, Shijiazhuang, China
| | - Yanyan Liu
- Department of Pharmaceutical Analysis, School of Pharmacy Hebei Medical University, Shijiazhuang, China
| | - Changchen Wan
- Department of Pharmaceutical Analysis, School of Pharmacy Hebei Medical University, Shijiazhuang, China
| | - Yupeng Sun
- Department of Pharmaceutical Analysis, School of Pharmacy Hebei Medical University, Shijiazhuang, China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J Med Chem 2017; 61:62-80. [PMID: 29271653 DOI: 10.1021/acs.jmedchem.7b01337] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues. In this drug annotation, we summarize the structure-activity and structure-liability studies leading to the discovery of 31 and the clinical studies conducted with 35 that entailed the development of an extended release formulation suitable for phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - David A Conlon
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dennis M Grasela
- Innovative Medicines Development, Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peter Timmins
- Drug Product Science and Technology, Bristol-Myers Squibb , Reeds Lane, Moreton, Merseyside CH46 1QW, United Kingdom
| | | | | |
Collapse
|
6
|
Voter AF, Keck JL. Development of Protein-Protein Interaction Inhibitors for the Treatment of Infectious Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:197-222. [PMID: 29459032 DOI: 10.1016/bs.apcsb.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Protein-protein interaction (PPI) inhibitors are a rapidly expanding class of therapeutics. Recent advances in our understanding of PPIs and success of early examples of PPI inhibitors demonstrate the feasibility of targeting PPIs. This review summarizes the techniques used for the discovery and optimization of a diverse set PPI inhibitors, focusing on the development of PPI inhibitors as new antibacterial and antiviral agents. We close with a summary of the advances responsible for making PPI inhibitors realistic targets for therapeutic intervention and brief outlook of the field.
Collapse
Affiliation(s)
- Andrew F Voter
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - James L Keck
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
7
|
Dang Z, Zhu L, Lai W, Bogerd H, Lee KH, Huang L, Chen CH. Aloperine and Its Derivatives as a New Class of HIV-1 Entry Inhibitors. ACS Med Chem Lett 2016; 7:240-4. [PMID: 26985308 DOI: 10.1021/acsmedchemlett.5b00339] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/09/2016] [Indexed: 12/28/2022] Open
Abstract
A quinolizidine-type alkaloid aloperine was found to inhibit HIV-1 infection by blocking HIV-1 entry. Aloperine inhibited HIV-1 envelope-mediated cell-cell fusion at low micromolar concentrations. To further improve the antiviral potency, more than 30 aloperine derivatives with a variety of N12-substitutions were synthesized. Among them, 12d with an N-(1-butyl)-4-trifluoromethoxy-benzamide side chain showed the most potent anti-HIV-1 activity with EC50 at 0.69 μM. Aloperine derivatives inhibited both X4 and R5 HIV-1 Env-mediated cell-cell fusions. In addition, both BMS-806, a compound representing a class of HIV-1 gp120-targeting small molecules in clinical trials, and resistant and sensitive HIV-1 Env-mediated cell-cell fusions were equally sensitive to aloperine derivatives. These results suggest that aloperine and its derivatives are a new class of anti-HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Zhao Dang
- Surgical Science,
Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Lei Zhu
- Surgical Science,
Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Weihong Lai
- Surgical Science,
Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Hal Bogerd
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kuo-Hsiung Lee
- Natural Products
Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Li Huang
- Surgical Science,
Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Chin-Ho Chen
- Surgical Science,
Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
8
|
Rongen GA, Wever KE. Cardiovascular pharmacotherapy: Innovation stuck in translation. Eur J Pharmacol 2015; 759:200-4. [PMID: 25814253 DOI: 10.1016/j.ejphar.2015.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Abstract
Systematic reviews of animal studies have revealed serious limitations in internal and external validity strongly affecting the reliability of this research. In addition inter-species differences are likely to further limit the predictive value of animal research for the efficacy and tolerability of new drugs in humans. Important changes in the research process are needed to allow efficient translation of preclinical discoveries to the clinic, including improvements in the laboratory and publication practices involving animal research and early incorporation of human proof-of-concept studies to optimize the interpretation of animal data for its predictive value for humans and the design of clinical trials.
Collapse
Affiliation(s)
- Gerard A Rongen
- Department of Pharmacology-Toxicology and Internal Medicine, Radboud university medical center, P.O. box 9101, Internal post address: 137, 6500 HB Nijmegen, The Netherlands.
| | - Kimberley E Wever
- SYstematic Review Centre for Laboratory animal Experimentation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Zhang MZ, Chen Q, Yang GF. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 2014; 89:421-41. [PMID: 25462257 PMCID: PMC7115707 DOI: 10.1016/j.ejmech.2014.10.065] [Citation(s) in RCA: 601] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
Indole represents one of the most important privileged scaffolds in drug discovery. Indole derivatives have the unique property of mimicking the structure of peptides and to bind reversibly to enzymes, which provide tremendous opportunities to discover novel drugs with different modes of action. There are seven indole-containing commercial drugs in the Top-200 Best Selling Drugs by US Retail Sales in 2012. There are also an amazing number of approved indole-containing drugs in the market as well as compounds currently going through different clinical phases or registration statuses. This review focused on the recent development of indole derivatives as antiviral agents with the following objectives: 1) To present one of the most comprehensive listings of indole antiviral agents, drugs on market or compounds in clinical trials; 2) To focus on recent developments of indole compounds (including natural products) and their antiviral activities, summarize the structure property, hoping to inspire new and even more creative approaches; 3) To offer perspectives on how indole scaffolds as a privileged structure might be exploited in the future.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjing 30071, PR China.
| |
Collapse
|
10
|
Timmins P, Brown J, Meanwell NA, Hanna GJ, Zhu L, Kadow JF. Enabled clinical use of an HIV-1 attachment inhibitor through drug delivery. Drug Discov Today 2014; 19:1288-93. [DOI: 10.1016/j.drudis.2014.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 12/01/2022]
|
11
|
Entry Inhibitors of Human Immunodeficiency Virus. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Yuan L, Jia P, Sun Y, Zhao C, Zhi X, Sheng N, Zhang L. Study of in vitro metabolism of m-nisoldipine in human liver microsomes and recombinant cytochrome P450 enzymes by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2014; 97:65-71. [PMID: 24816159 DOI: 10.1016/j.jpba.2014.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
This is a report about the investigation of the metabolic fate of m-nisoldipine in human liver microsomes and the recombinant cytochrome P450 enzymes by using LC-MS/MS. A sensitive and reliable LC-MS/MS method was developed to obtain a rapid and complete characterization of new metabolites and the metabolism pathways. The analytes were separated on a reversed phase C18 column with acetonitrile and 0.1% aqueous formic acid as the mobile phase. Tandem mass spectrometry with positive electrospray ionization was used to enable the structural characterization of the metabolites. A total of 10 metabolites were characterized with proposed structures in the incubation of human liver microsomes by comparing their retention times and spectral patterns with those of the parent drug. Dehydrogenation of the dihydropyridine core and reactions of side chains such as hydroxylation and hydrolysis of ester bonds were the major metabolic pathways. The specific cytochrome P450 (CYP) enzymes responsible for m-nisoldipine metabolites were identified using chemical inhibition and cDNA expressed CYP enzymes. The results indicated that CYP2C19 and CYP3A4 might play major roles in the metabolism of m-nisoldipine in human liver microsomes.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Peipei Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yupeng Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Chengcheng Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Xuran Zhi
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Ning Sheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
13
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Gadhe CG, Kothandan G, Cho SJ. Characterization of Binding Mode of the Heterobiaryl gp120 Inhibitor in HIV-1 Entry: A Molecular Docking and Dynamics Simulation Study. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Regueiro-Ren A, Xue QM, Swidorski JJ, Gong YF, Mathew M, Parker DD, Yang Z, Eggers B, D'Arienzo C, Sun Y, Malinowski J, Gao Q, Wu D, Langley DR, Colonno RJ, Chien C, Grasela DM, Zheng M, Lin PF, Meanwell NA, Kadow JF. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 12. Structure-activity relationships associated with 4-fluoro-6-azaindole derivatives leading to the identification of 1-(4-benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1h-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248). J Med Chem 2013; 56:1656-69. [PMID: 23360431 DOI: 10.1021/jm3016377] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of highly potent HIV-1 attachment inhibitors with 4-fluoro-6-azaindole core heterocycles that target the viral envelope protein gp120 has been prepared. Substitution in the 7-position of the azaindole core with amides (12a,b), C-linked heterocycles (12c-l), and N-linked heterocycles (12m-u) provided compounds with subnanomolar potency in a pseudotype infectivity assay and good pharmacokinetic profiles in vivo. A predictive model was developed from the initial SAR in which the potency of the analogues correlated with the ability of the substituent in the 7-position of the azaindole to adopt a coplanar conformation by either forming internal hydrogen bonds or avoiding repulsive substitution patterns. 1-(4-Benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248, 12m) exhibited much improved in vitro potency and pharmacokinetic properties than the previous clinical candidate BMS-488043 (1). The predicted low clearance in humans, modest protein binding, and good potency in the presence of 40% human serum for 12m led to its selection for human clinical studies.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Department of Medicinal Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang T, Yang Z, Zhang Z, Gong YF, Riccardi KA, Lin PF, Parker DD, Rahematpura S, Mathew M, Zheng M, Meanwell NA, Kadow JF, Bender JA. Inhibitors of HIV-1 attachment. Part 10. The discovery and structure-activity relationships of 4-azaindole cores. Bioorg Med Chem Lett 2012. [PMID: 23200254 DOI: 10.1016/j.bmcl.2012.10.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of 4-azaindole oxoacetic acid piperazine benzamides was synthesized and evaluated in an effort to identify an oral HIV-1 attachment inhibitor with the potential to improve upon the pre-clinical profile of BMS-378806 (7), an initial clinical compound. Modifications at the 7-position of the 4-azaindole core modulated potency significantly and SAR showed that certain compounds with a 5-membered ring heteroaryl group at that position were the most potent. Four of the compounds with the best profiles were evaluated in a rat pharmacokinetic model and all had superior oral bioavailability and lower clearance when compared with 7.
Collapse
Affiliation(s)
- Tao Wang
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bender JA, Yang Z, Eggers B, Gong YF, Lin PF, Parker DD, Rahematpura S, Zheng M, Meanwell NA, Kadow JF. Inhibitors of HIV-1 attachment. Part 11: the discovery and structure-activity relationships associated with 4,6-diazaindole cores. Bioorg Med Chem Lett 2012. [PMID: 23206859 DOI: 10.1016/j.bmcl.2012.10.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of HIV-1 attachment inhibitors containing a 4,6-diazaindole core were examined in an effort to identify a compound which improved upon the potency and oral exposure of BMS-488043 (2). BMS-488043 (2) is a 6-azaindole-based HIV-1 attachment inhibitor which established proof-of-concept for this mechanism in human clinical studies but required high doses and concomitant administration of a high fat meal to achieve efficacious exposures. Based on previous studies in indole and azaindole scaffolds, SAR investigation was concentrated around the key 7-position in the 4,6-diazaindole series and led to the discovery of molecules with 5- to 20-fold increases in potency and three- to seven-fold increases in exposure over 2 in a rat PK studies.
Collapse
Affiliation(s)
- John A Bender
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kadow JF, Ueda Y, Meanwell NA, Connolly TP, Wang T, Chen CP, Yeung KS, Zhu J, Bender JA, Yang Z, Parker D, Lin PF, Colonno RJ, Mathew M, Morgan D, Zheng M, Chien C, Grasela D. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment 6. Preclinical and human pharmacokinetic profiling of BMS-663749, a phosphonooxymethyl prodrug of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043). J Med Chem 2012; 55:2048-56. [PMID: 22356441 DOI: 10.1021/jm201218m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BMS-663749, a phosphonooxymethyl prodrug 4 of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043) (2) was prepared and profiled in a variety of preclinical in vitro and in vivo models designed to assess its ability to deliver parent drug following oral administration. The data showed that prodrug 4 had excellent potential to significantly reduce dissolution rate-limited absorption following oral dosing in humans. Clinical studies in normal healthy subjects confirmed the potential of 4, revealing that the prodrug significantly increased both the AUC and C(max) of 2 compared to a solid capsule formulation containing the parent drug upon dose escalation. These data provided guidance for further efforts to obtain an effective HIV-1 attachment inhibitor.
Collapse
Affiliation(s)
- John F Kadow
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gadhe CG, Kothandan G, Madhavan T, Cho SJ. Molecular modeling study of HIV-1 gp120 attachment inhibitors. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9711-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Lanevskij K, Dapkunas J, Juska L, Japertas P, Didziapetris R. QSAR Analysis of Blood–Brain Distribution: The Influence of Plasma and Brain Tissue Binding. J Pharm Sci 2011; 100:2147-60. [DOI: 10.1002/jps.22442] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/11/2010] [Accepted: 11/16/2010] [Indexed: 11/07/2022]
|
21
|
Yang Z, Zadjura LM, Marino AM, D'Arienzo CJ, Malinowski J, Gesenberg C, Lin PF, Colonno RJ, Wang T, Kadow JF, Meanwell NA, Hansel SB. Utilization of in vitro Caco-2 permeability and liver microsomal half-life screens in discovering BMS-488043, a novel HIV-1 attachment inhibitor with improved pharmacokinetic properties. J Pharm Sci 2010; 99:2135-52. [PMID: 19780144 DOI: 10.1002/jps.21948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Optimizing pharmacokinetic properties to improve oral exposure is a common theme in modern drug discovery. In the present work, in vitro Caco-2 permeability and microsomal half-life screens were utilized in an effort to guide the structure-activity relationship in order to improve the pharmacokinetic properties of novel HIV-1 attachment inhibitors. The relevance of the in vitro screens to in vivo pharmacokinetic properties was first demonstrated with a number of program compounds at the early stage of lead optimization. The Caco-2 permeability, tested at 200 microM, was quantitatively predictive of in vivo oral absorption, with complete absorption occurring at a Caco-2 permeability of 100 nm/s or higher. The liver microsomal half-life screen, conducted at 1 microM substrate concentration, can readily differentiate low-, intermediate-, and high-clearance compounds in rats, with a nearly 1:1 correlation in 12 out of 13 program compounds tested. Among the >100 compounds evaluated, BMS-488043 emerged as a lead, exhibiting a Caco-2 permeability of 178 nm/s and a microsomal half-life predictive of a low clearance (4 mL/min/kg) in humans. These in vitro characteristics translated well to the in vivo setting. The oral bioavailability of BMS-488043 in rats, dogs, and monkeys was 90%, 57%, and 60%, respectively. The clearance was low in all three species tested, with a terminal half-life ranging from 2.4 to 4.7 h. Furthermore, the oral exposure of BMS-488043 was significantly improved (6- to 12-fold in rats and monkeys) compared to the prototype compound BMS-378806 that had a suboptimal Caco-2 permeability (51 nm/s) and microsomal half-life. More importantly, the improvements in preclinical pharmacokinetics translated well to humans, leading to a >15-fold increase in the human oral exposure of BMS-488043 than BMS-378806 and enabling a clinical proof-of-concept for this novel class of anti-HIV agents. The current studies demonstrated the valuable role of in vitro ADME screens in improving oral pharmacokinetics at the lead optimization stage.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Wallingford, Connecticut 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang T, Yin Z, Zhang Z, Bender JA, Yang Z, Johnson G, Yang Z, Zadjura LM, D’Arienzo CJ, DiGiugno Parker D, Gesenberg C, Yamanaka GA, Gong YF, Ho HT, Fang H, Zhou N, McAuliffe BV, Eggers BJ, Fan L, Nowicka-Sans B, Dicker IB, Gao Q, Colonno RJ, Lin PF, Meanwell NA, Kadow JF. Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment. 5. An Evolution from Indole to Azaindoles Leading to the Discovery of 1-(4-Benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a Drug Candidate That Demonstrates Antiviral Activity in HIV-1-Infected Subjects. J Med Chem 2009; 52:7778-87. [DOI: 10.1021/jm900843g] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Zheng Yang
- Metabolism and Pharmacokinetics, Preclinical Candidate Optimization
| | - Lisa M. Zadjura
- Metabolism and Pharmacokinetics, Preclinical Candidate Optimization
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qi Gao
- Analytical Research and Development, Bristol-Myers Squibb Research and Development, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | | | | | | | | |
Collapse
|
23
|
Tran TD, Adam FM, Calo F, Fenwick DR, Fok-Seang J, Gardner I, Hay DA, Perros M, Rawal J, Middleton DS, Parkinson T, Pickford C, Platts M, Randall A, Stephenson PT, Vuong H, Williams DH. Design and optimisation of potent gp120-CD4 inhibitors. Bioorg Med Chem Lett 2009; 19:5250-5. [DOI: 10.1016/j.bmcl.2009.06.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/23/2009] [Accepted: 06/23/2009] [Indexed: 11/28/2022]
|
24
|
Colombo D, Villa S, Solano L, Legnani L, Marinone Albini F, Toma L. An Exhaustive Conformational Evaluation of the HIV-1 Inhibitor BMS-378806 through Theoretical Calculations and Nuclear Magnetic Resonance Spectroscopy. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Williams DH, Adam F, Fenwick DR, Fok-Seang J, Gardner I, Hay D, Jaiessh R, Middleton DS, Mowbray CE, Parkinson T, Perros M, Pickford C, Platts M, Randall A, Siddle D, Stephenson PT, Tran TD, Vuong H. Discovery of a small molecule inhibitor through interference with the gp120-CD4 interaction. Bioorg Med Chem Lett 2009; 19:5246-9. [PMID: 19620004 DOI: 10.1016/j.bmcl.2009.06.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/19/2009] [Accepted: 06/20/2009] [Indexed: 10/20/2022]
Abstract
A series of piperazine derivatives were designed and synthesised as gp120-CD4 inhibitors. SAR studies led to the discovery of potent inhibitors in a cell based anti viral assay represented by compounds 9 and 28. The rat pharmacokinetic and antiviral profiles of selected compounds are also presented.
Collapse
Affiliation(s)
- David H Williams
- Department of Chemistry, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Sandwich, Kent, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zheng X, Kerr MA. Synthesis and Cross-Coupling Reactions of 7-Azaindoles via a New Donor−Acceptor Cyclopropane. Org Lett 2006; 8:3777-9. [PMID: 16898815 DOI: 10.1021/ol061379i] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] A new type of donor-acceptor cyclopropane has been prepared from commercially available cyclopropane-1,1-diesters. This cyclopropane reacts with triflic anhydride to produce an isolable tristrifloxy intermediate which when treated with primary amines gives 6-trifloxy-7-azaindolines which in turn can be dehydrogenated to the azaindoles. The 6-trifloxy substituent can be used to introduce diversity at this position via a variety of cross-coupling reactions thus preparing potentially interesting compounds based on the important 7-azaindole pharmacophore.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
27
|
Kong R, Tan JJ, Ma XH, Chen WZ, Wang CX. Prediction of the binding mode between BMS-378806 and HIV-1 gp120 by docking and molecular dynamics simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:766-72. [PMID: 16455315 DOI: 10.1016/j.bbapap.2005.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/07/2005] [Accepted: 12/08/2005] [Indexed: 11/20/2022]
Abstract
BMS-378806 is a newly discovered small molecule that effectively blocks the binding of CD4 with gp120. The binding mode of this kind of inhibitor remains unknown. In this paper, AutoDock 3.0 in conjunction with molecular dynamics simulation, accommodating the receptor's flexibility, was used to explore the binding mode between BMS-378806 and gp120. Two structures, Mode I and Mode II, with the lowest docking energy were selected as different representative binding modes. The analysis of the results from the molecular dynamics simulation indicated that the binding of BMS-348806 in Mode II is more stable. The average structure of Mode II was analyzed and compared with the experimental data. The conclusion was that BMS-378806 inserts the azaindole ring deeply into the PHE43 cavity and makes contact with a number of residues in the cavity, on the cavity and near the cavity. This study benefits the understanding of the mechanism of this kind of inhibitor and may provide useful information for rational drug design.
Collapse
Affiliation(s)
- Ren Kong
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100022, China
| | | | | | | | | |
Collapse
|