1
|
Qu T, Sun Y, Zhao J, Liu N, Yang J, Lyu D, Huang W, Zhan W, Li T, Yao Z, Yan R, Zhang H, Hong H, Shi L, Meng X, Yin B. Scoulerine: A natural isoquinoline alkaloid targeting SLC6A3 to treat RCC. Biomed Pharmacother 2024; 180:117524. [PMID: 39395255 DOI: 10.1016/j.biopha.2024.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Scoulerine, an isoquinoline alkaloid derived from the corydalis plant, exhibits diverse therapeutic properties against tumors, Alzheimer's disease, and inflammation. This research delves into the pharmacological impact and underlying mechanism of scoulerine on renal cell carcinoma (RCC). Our findings suggest that Scoulerine displays promise as a potential therapeutic agent for RCC, demonstrating notable inhibitory effects in both in vivo and in vitro models. In addition, scoulerine inhibited the viability of 769-P and 786-O cell lines in a time-dependent and dose-dependent manner, and promoted the level of apoptosis associated with B-cell lymphoma-2 associated X protein (Bax). Moreover, the administration of scoulerine resulted in a significant suppression of the mitogen activated protein kinase (MAPK) signaling pathway. Subsequently, utilizing bioinformatics and spatial transcriptomic databases, we identified solute carrier family 6 Member 3 (SLC6A3) as the most promising target of scoulerine. Through experimental validation, we confirmed the functional and therapeutic relevance of SLC6A3 in scoulerine-mediated treatment of RCC. The results of our study indicate a significant affinity between scoulerine and SLC6A3, with competitive inhibition of this interaction leading to a reduction in the inhibitory impact of scoulerine on RCC cell viability. In conclusion, our findings suggest that scoulerine may induce apoptosis in RCC by targeting SLC6A3 and inhibiting the activation of the MAPK signaling pathway, thereby positioning it as a promising natural compound for potential future RCC treatment.
Collapse
Affiliation(s)
- Tianrui Qu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Jianli Yang
- Department of Laboratory Animals, China Medical University, Shenyang, Liaoning 110122, China
| | - Dantong Lyu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Wenjie Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Weizhen Zhan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Zichuan Yao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rongbo Yan
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hong Hong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Liye Shi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
3
|
Tanda G, Newman AH, Katz JL. Discovery of drugs to treat cocaine dependence: behavioral and neurochemical effects of atypical dopamine transport inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:253-89. [PMID: 20230764 PMCID: PMC6768413 DOI: 10.1016/s1054-3589(08)57007-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stimulant drugs acting at the dopamine transporter (DAT), like cocaine, are widely abused, yet effective medical treatments for this abuse have not been found. Analogs of benztropine (BZT) that, like cocaine, act at the DAT have effects that differ from cocaine and in some situations block the behavioral, neurochemical, and reinforcing actions of cocaine. Neurochemical studies of dopamine levels in brain and behavioral studies have demonstrated that BZT analogs have a relatively slow onset and reduced maximal effects compared to cocaine. Pharmacokinetic studies, however, indicated that the BZT analogs rapidly access the brain at concentrations above their in vitro binding affinities, while binding in vivo demonstrates apparent association rates for BZT analogs lower than that for cocaine. Additionally, the off-target effects of these compounds do not fully explain their differences from cocaine. Initial structure-activity studies indicated that BZT analogs bind to DAT differently from cocaine and these differences have been supported by site-directed mutagenesis studies of the DAT. In addition, BZT analog-mediated inhibition of uptake was more resistant to mutations producing inward conformational DAT changes than cocaine analogs. The BZT analogs have provided new insights into the relation between the molecular and behavioral actions of cocaine and the diversity of effects produced by dopamine transport inhibitors. Novel interactions of BZT analogs with the DAT suggest that these drugs may have a pharmacology that would be useful in their development as treatments for cocaine abuse.
Collapse
Affiliation(s)
- Gianluigi Tanda
- Medications Discovery Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|