1
|
Prentice RN, Younus M, Rizwan SB. A sensitive LC-MS/MS method for quantification of phenytoin and its major metabolite with application to in vivo investigations of intravenous and intranasal phenytoin delivery. J Sep Sci 2022; 45:2529-2542. [PMID: 35588117 PMCID: PMC9545894 DOI: 10.1002/jssc.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Phenytoin is a powerful antiseizure drug with complex pharmacokinetic properties, making it an interesting model drug to use in preclinical in vivo investigations, especially with regards to formulations aiming to improve drug delivery to the brain. Moreover, it has a major metabolite, 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin, which can be simultaneously studied to achieve a better assessment of its behaviour in the body. Here, we describe the development and validation of a sensitive LCMS/MS method for quantification of phenytoin and 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin in rat plasma and brain which can be used in such preclinical studies. Calibration curves produced covered a range of 7.81 to 250 ng/mL (plasma) and 23.4 to 750 ng/g (brain tissue) for both analytes. The method was validated for specificity, sensitivity, accuracy, and precision and found to be within the acceptable limits of ±15% over this range in both tissue types. The method when applied in two in vivo investigations: validation of a seizure model and to study the behaviour of a solution of intranasally administered phenytoin as a foundation for future studies into direct nose‐to‐brain delivery of phenytoin using specifically developed particulate systems, was highly sensitive for detecting phenytoin and 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin in rat plasma and brain.
Collapse
|
2
|
Darakjian L, Deodhar M, Turgeon J, Michaud V. Chronic Inflammatory Status Observed in Patients with Type 2 Diabetes Induces Modulation of Cytochrome P450 Expression and Activity. Int J Mol Sci 2021; 22:ijms22094967. [PMID: 34067027 PMCID: PMC8124164 DOI: 10.3390/ijms22094967] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that causes a hyperglycemic status which leads, over time, to serious damage to the heart, blood vessels, eyes, kidneys and nerves. The most frequent form of diabetes is type 2 diabetes mellitus (T2DM) which is often part of a metabolic syndrome (hyperglycaemia, hypertension, hypercholesterolemia, abdominal obesity) that usually requires the use of several medications from different drug classes to bring each of these conditions under control. T2DM is associated with an increase in inflammatory markers such as interleukin-6 (IL-6) and the tumor necrosis factor alpha (TNF-α). Higher levels of IL-6 and TNF-α are associated with a downregulation of several drug metabolizing enzymes, especially the cytochrome P450 (P450) isoforms CYP3As and CYP2C19. A decrease in these P450 isoenzymes may lead to unexpected rise in plasma levels of substrates of these enzymes. It could also give rise to a mismatch between the genotypes determined for these enzymes, the predicted phenotypes based on these genotypes and the phenotypes observed clinically. This phenomenon is described as phenoconversion. Phenoconversion typically results from either a disease (such as T2DM) or concomitant administration of medications inducing or inhibiting (including competitive or non-competitive inhibition) a P450 isoenzyme used by other substrates for their elimination. Phenoconversion could have a significant impact on drug effects and genotypic-focused clinical outcomes. As the aging population is exposed to polypharmacy along with inflammatory comorbidities, consideration of phenoconversion related to drug metabolizing enzymes is of importance when applying pharmacogenomic results and establishing personalized and more precise drug regimens.
Collapse
Affiliation(s)
- Lucy Darakjian
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
| | - Malavika Deodhar
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
| | - Jacques Turgeon
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Veronique Michaud
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-407-454-9964
| |
Collapse
|
3
|
Sayre RR, Wambaugh JF, Grulke CM. Database of pharmacokinetic time-series data and parameters for 144 environmental chemicals. Sci Data 2020; 7:122. [PMID: 32313097 PMCID: PMC7170868 DOI: 10.1038/s41597-020-0455-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
Time courses of compound concentrations in plasma are used in chemical safety analysis to evaluate the relationship between external administered doses and internal tissue exposures. This type of experimental data is rarely available for the thousands of non-pharmaceutical chemicals to which people may potentially be unknowingly exposed but is necessary to properly assess the risk of such exposures. In vitro assays and in silico models are often used to craft an understanding of a chemical's pharmacokinetics; however, the certainty of the quantitative application of these estimates for chemical safety evaluations cannot be determined without in vivo data for external validation. To address this need, we present a public database of chemical time-series concentration data from 567 studies in humans or test animals for 144 environmentally-relevant chemicals and their metabolites (187 analytes total). All major administration routes are incorporated, with concentrations measured in blood/plasma, tissues, and excreta. We also include calculated pharmacokinetic parameters for some studies, and a bibliography of additional source documents to support future extraction of time-series. In addition to pharmacokinetic model calibration and validation, these data may be used for analyses of differential chemical distribution across chemicals, species, doses, or routes, and for meta-analyses on pharmacokinetic studies.
Collapse
Affiliation(s)
- Risa R Sayre
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - John F Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Christopher M Grulke
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
4
|
Yang Y, Liu X. Imbalance of Drug Transporter-CYP450s Interplay by Diabetes and Its Clinical Significance. Pharmaceutics 2020; 12:E348. [PMID: 32290519 PMCID: PMC7238081 DOI: 10.3390/pharmaceutics12040348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
The pharmacokinetics of a drug is dependent upon the coordinate work of influx transporters, enzymes and efflux transporters (i.e., transporter-enzyme interplay). The transporter-enzyme interplay may occur in liver, kidney and intestine. The influx transporters involving drug transport are organic anion transporting polypeptides (OATPs), peptide transporters (PepTs), organic anion transporters (OATs), monocarboxylate transporters (MCTs) and organic cation transporters (OCTs). The efflux transporters are P-glycoprotein (P-gp), multidrug/toxin extrusions (MATEs), multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). The enzymes related to drug metabolism are mainly cytochrome P450 enzymes (CYP450s) and UDP-glucuronosyltransferases (UGTs). Accumulating evidence has demonstrated that diabetes alters the expression and functions of CYP450s and transporters in a different manner, disordering the transporter-enzyme interplay, in turn affecting the pharmacokinetics of some drugs. We aimed to focus on (1) the imbalance of transporter-CYP450 interplay in the liver, intestine and kidney due to altered expressions of influx transporters (OATPs, OCTs, OATs, PepTs and MCT6), efflux transporters (P-gp, BCRP and MRP2) and CYP450s (CYP3As, CYP1A2, CYP2E1 and CYP2Cs) under diabetic status; (2) the net contributions of these alterations in the expression and functions of transporters and CYP450s to drug disposition, therapeutic efficacy and drug toxicity; (3) application of a physiologically-based pharmacokinetic model in transporter-enzyme interplay.
Collapse
Affiliation(s)
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
5
|
Lee JH, Lee YJ, Oh E. Pharmacokinetics of drugs in mutant Nagase analbuminemic rats and responses to select diuretics. ACTA ACUST UNITED AC 2013; 66:2-13. [PMID: 24151919 DOI: 10.1111/jphp.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To report (1) the pharmacokinetics of drugs that are mainly metabolized via hepatic cytochrome P450s (CYPs) or mainly excreted via the urine and bile, (2) the mechanism for the urinary excretion of drugs (such as glomerular filtration or renal active secretion or re-absorption), and (3) the diuretic effect of some loop diuretics in mutant Nagase analbuminaemic rats (NARs), an animal model for human familial analbuminaemia based on the pharmacokinetics of drugs reported in the literatures. KEY FINDINGS In NARs, the changes in the time-averaged non-renal clearances (CL(NR)s) of drugs that are mainly metabolized via CYPs were explained in terms of changes in the hepatic intrinsic clearance (mainly because of changes in CYPs), free (unbound) fractions of drugs in the plasma (fp) and hepatic blood-flow rate (QH) depending on the hepatic excretion ratios of drugs. SUMMARY The CL(NR) changes of drugs mainly metabolized via hepatic CYPs can be sufficiently explained by the three earlier mentioned factors. The plasma albumin (furosemide) or globulin (azosemide, bumetanide and torasemide) binding affects their diuretic effects.
Collapse
Affiliation(s)
- Joo Hyun Lee
- College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | | | | |
Collapse
|
6
|
Lee JH, Yang SH, Oh JM, Lee MG. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 2010; 62:1-23. [DOI: 10.1211/jpp.62.01.0001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Objectives
In rats with diabetes mellitus induced by alloxan (DMIA) or streptozocin (DMIS), changes in the cytochrome P450 (CYP) isozymes in the liver, lung, kidney, intestine, brain, and testis have been reported based on Western blot analysis, Northern blot analysis, and various enzyme activities. Changes in phase II enzyme activities have been reported also. Hence, in this review, changes in the pharmacokinetics of drugs that were mainly conjugated and metabolized via CYPs or phase II isozymes in rats with DMIA or DMIS, as reported in various literature, have been explained. The changes in the pharmacokinetics of drugs that were mainly conjugated and mainly metabolized in the kidney, and that were excreted mainly via the kidney or bile in DMIA or DMIS rats were reviewed also. For drugs mainly metabolized via hepatic CYP isozymes, the changes in the total area under the plasma concentration–time curve from time zero to time infinity (AUC) of metabolites, AUCmetabolite/AUCparent drug ratios, or the time-averaged nonrenal and total body clearances (CLNR and CL, respectively) of parent drugs as reported in the literature have been compared.
Key findings
After intravenous administration of drugs that were mainly metabolized via hepatic CYP isozymes, their hepatic clearances were found to be dependent on the in-vitro hepatic intrinsic clearance (CLint) for the disappearance of the parent drug (or in the formation of the metabolite), the free fractions of the drugs in the plasma, or the hepatic blood flow rate depending on their hepatic extraction ratios. The changes in the pharmacokinetics of drugs that were mainly conjugated and mainly metabolized via the kidney in DMIA or DMIS rats were dependent on the drugs. However, the biliary or renal CL values of drugs that were mainly excreted via the kidney or bile in DMIA or DMIS rats were faster.
Summary
Pharmacokinetic studies of drugs in patients with type I diabetes mellitus were scarce. Moreover, similar and different results for drug pharmacokinetics were obtained between diabetic rats and patients with type I diabetes mellitus. Thus, present experimental rat data should be extrapolated carefully in humans.
Collapse
Affiliation(s)
- Joo H Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Gastroenterology and Metabolism Products Division, Pharmaceutical Safety Bureau, Korea Food & Drug Administration, Seoul, South Korea
| | - Si H Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jung M Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Myung G Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|