1
|
Chen H, Ji L, Wong A, Chu Y, Feng W, Zhu Y, Wang J, Comeo E, Kim DH, Stocks MJ, Gershkovich P. Delivery of imiquimod to intestinal lymph nodes following oral administration. Int J Pharm 2024; 667:124895. [PMID: 39486489 DOI: 10.1016/j.ijpharm.2024.124895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Intestinal lymph nodes are involved in the progression of colorectal cancer (CRC). Tumours suppress the activation of dendritic cells (DCs) in draining lymph nodes, diminishing anti-cancer immune response. Imiquimod (IMQ) facilitates DCs activation via toll-like receptor 7, suggesting that targeted delivery of IMQ to intestinal lymph nodes can improve the treatment of CRC. This study aims to enhance the delivery of IMQ to intestinal lymph nodes by a highly lipophilic prodrug approach. Amide prodrugs were synthesised by conjugating IMQ with saturated and unsaturated medium- to long-chain fatty acids. Their potential for intestinal lymphatic transport was assessed by their affinity to chylomicrons and solubility in long-chain triglycerides. Further selection of prodrug candidates was determined by resistance to enzymatic hydrolysis in intestinal lumen and release of IMQ in the lymphatics using fasting state simulated intestinal fluid supplemented with esterases, brush border enzyme vesicles and plasma. Key pharmacokinetic parameters and biodistribution in rats were assessed for the most promising compounds, prodrugs 5 and 8. The plasma concentration-time profile of IMQ following oral administration of the prodrugs was less erratic in comparison to the administration of unmodified IMQ. The lymph-to-plasma ratios of IMQ concentration increased 1.9- and 1.7-fold using prodrugs 5 and 8 in comparison to administration of unmodified IMQ, respectively. Importantly, the average concentration of IMQ in mesenteric lymph nodes (MLN) was 11.2- and 7.6-fold higher than in plasma following the administration of prodrugs 5 and 8, respectively. Additionally, the non-specific wide distribution of IMQ into various organs and tissues was reduced with prodrugs. This work suggests that the highly lipophilic prodrug approach can efficiently deliver IMQ to intestinal lymphatics. In addition, this study demonstrates the feasibility of an amide prodrug approach for intestinal lymphatic targeting.
Collapse
Affiliation(s)
- Haojie Chen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Abigail Wong
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yenju Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yufei Zhu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Junting Wang
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eleonora Comeo
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Dong-Hyun Kim
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
2
|
Ramadan FHJ, Koszegi B, Vantus VB, Fekete K, Kiss GN, Rizsanyi B, Bognar R, Gallyas F, Bognar Z. Comparison of Mitochondrial and Antineoplastic Effects of Amiodarone and Desethylamiodarone in MDA-MB-231 Cancer Line. Int J Mol Sci 2024; 25:9781. [PMID: 39337269 PMCID: PMC11432025 DOI: 10.3390/ijms25189781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Previously, we have demonstrated that amiodarone (AM), a widely used antiarrhythmic drug, and its major metabolite desethylamiodarone (DEA) both affect several mitochondrial processes in isolated heart and liver mitochondria. Also, we have established DEA's antitumor properties in various cancer cell lines and in a rodent metastasis model. In the present study, we compared AM's and DEA's mitochondrial and antineoplastic effects in a human triple-negative breast cancer (TNBC) cell line. Both compounds reduced viability in monolayer and sphere cultures and the invasive growth of the MDA-MB-231 TNBC line by inducing apoptosis. They lowered mitochondrial trans-membrane potential, increased Ca2+ influx, induced mitochondrial permeability transition, and promoted mitochondrial fragmentation. In accordance with their mitochondrial effects, both substances massively decreased overall, and even to a greater extent, mitochondrial ATP production decreased, as determined using a Seahorse live cell respirometer. In all these effects, DEA was more effective than AM, indicating that DEA may have higher potential in the therapy of TNBC than its parent compound.
Collapse
Affiliation(s)
- Fadi H J Ramadan
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Balazs Koszegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Viola B Vantus
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Gyongyi N Kiss
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Balint Rizsanyi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Rita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| |
Collapse
|
3
|
Algharably EAEH, Di Consiglio E, Testai E, Kreutz R, Gundert-Remy U. Prediction of the dose range for adverse neurological effects of amiodarone in patients from an in vitro toxicity test by in vitro-in vivo extrapolation. Arch Toxicol 2021; 95:1433-1442. [PMID: 33606068 PMCID: PMC8032623 DOI: 10.1007/s00204-021-02989-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
Amiodarone is an antiarrhythmic agent inducing adverse effects on the nervous system, among others. We applied physiologically based pharmacokinetic (PBPK) modeling combined with benchmark dose modeling to predict, based on published in vitro data, the in vivo dose of amiodarone which may lead to adverse neurological effects in patients. We performed in vitro–in vivo extrapolation (IVIVE) from concentrations measured in the cell lysate of a rat brain 3D cell model using a validated human PBPK model. Among the observed in vitro effects, inhibition of choline acetyl transferase (ChAT) was selected as a marker for neurotoxicity. By reverse dosimetry, we transformed the in vitro concentration–effect relationship into in vivo effective human doses, using the calculated in vitro area under the curve (AUC) of amiodarone as the pharmacokinetic metric. The upper benchmark dose (BMDU) was calculated and compared with clinical doses eliciting neurological adverse effects in patients. The AUCs in the in vitro brain cell culture after 14-day repeated dosing of nominal concentration equal to 1.25 and 2.5 µM amiodarone were 1.00 and 1.99 µg*h/mL, respectively. The BMDU was 385.4 mg for intravenous converted to 593 mg for oral application using the bioavailability factor of 0.65 as reported in the literature. The predicted dose compares well with neurotoxic doses in patients supporting the hypothesis that impaired ChAT activity may be related to the molecular/cellular mechanisms of amiodarone neurotoxicity. Our study shows that predicting effects from in vitro data together with IVIVE can be used at the initial stage for the evaluation of potential adverse drug reactions and safety assessment in humans.
Collapse
Affiliation(s)
- Engi Abd El-Hady Algharably
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Emma Di Consiglio
- Istituto Superiore Di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | - Emanuela Testai
- Istituto Superiore Di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10115, Berlin, Germany
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Study on the Role of the Inclusion Complexes with 2-Hydroxypropyl-β-cyclodextrin for Oral Administration of Amiodarone. INT J POLYM SCI 2019. [DOI: 10.1155/2019/1695189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to improve the solubility of amiodarone hydrochloride (AMD) and the drug release using its inclusion complexes with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes were prepared by coprecipitation and freeze-drying. The solubility enhancement of AMD/HP-β-CD inclusion complexes by 4–22 times was evaluated by the phase solubility method. The inclusion complexes were studied both in solution and in solid state by spectroscopic methods, dynamic light scattering (DLS) and zeta potential analysis, SEM, and DSC. The formulations of AMD/HP-β-CD inclusion complexes both as powdered form and as matrix tablets showed superior pharmacokinetic performance in improving loading and release properties in respect of those of the insoluble AMD drug. In vitro kinetic study reveals a complex mechanism of release occurring in three steps: the first one being attributed to a burst effect and the other two to different bonding existing in inclusion complexes. An in vivo test on matrix tablets containing Kollidon® and chitosan also reveals a multiple (at least two) peaks release diagram because of both structures of the inclusion complexes and also of different sites of absorption in biological media (digestive tract).
Collapse
|
5
|
Abdussalam A, Al-Agili M, Al Nebaihi HM, Mayo PR, Gabr RQ, Brocks DR. Dietary-Induced Obesity and Changes in the Biodistribution and Metabolism of Amiodarone in the Rat. J Pharm Sci 2018; 107:2938-2945. [DOI: 10.1016/j.xphs.2018.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
|
6
|
Yonezawa Y, Ohsumi T, Miyashita T, Kataoka A, Hashimoto K, Nejishima H, Ogawa H. Evaluation of skin phototoxicity study using SD rats by transdermal and oral administration. J Toxicol Sci 2016; 40:667-83. [PMID: 26558448 DOI: 10.2131/jts.40.667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Guinea pigs are the most frequently used animals in phototoxicity studies. However, general toxicity studies most often use Sprague-Dawley (SD) rats. To reduce the number of animals needed for drug development, we examined whether skin phototoxicity studies could be performed using SD rats. A total of 19 drugs that had previously been shown to have phototoxic potential and 3 known phototoxic compounds were administered transdermally to guinea pigs and SD rats. Eleven of the potentially phototoxic drugs and 2 of the known phototoxic compounds were also administered orally to guinea pigs and SD rats. After administration, the animals were irradiated with UV-A (10 J/cm(2)) and UV-B (0.25 J/cm(2) in guinea pigs and 0.031 J/cm(2) in SD rats) with doses based on standard phototoxicity study guidelines and the results of a minimum erythema dose test, respectively. In the transdermal administration study, all of the known phototoxic compounds and 7 of the drugs induced phototoxic reactions. In the oral administration study, both known phototoxic compounds and 5 drugs induced phototoxic reactions in both species; one compound each was found to be toxic only in SD rats or guinea pigs. The concordance rate of guinea pigs and SD rats was 100% in the transdermal administration study and 85% in the oral administration study. This study demonstrated that phototoxicity studies using SD rats have the same potential to detect phototoxic compounds as studies using guinea pigs.
Collapse
Affiliation(s)
- Yutaka Yonezawa
- Pharmacokinetics and Safety Department Drug Research Center Kaken Pharmaceutical Co., Ltd
| | | | | | | | | | | | | |
Collapse
|
7
|
A Physiologically Based Pharmacokinetic Model of Amiodarone and its Metabolite Desethylamiodarone in Rats: Pooled Analysis of Published Data. Eur J Drug Metab Pharmacokinet 2015; 41:689-703. [DOI: 10.1007/s13318-015-0295-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Ferreira A, Rodrigues M, Silvestre S, Falcão A, Alves G. HepaRG cell line as an in vitro model for screening drug–drug interactions mediated by metabolic induction: Amiodarone used as a model substance. Toxicol In Vitro 2014; 28:1531-5. [DOI: 10.1016/j.tiv.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/16/2014] [Accepted: 08/10/2014] [Indexed: 02/01/2023]
|
9
|
Ramesh Varkhede N, Jhajra S, Suresh Ahire D, Singh S. Metabolite identification studies on amiodarone in in vitro (rat liver microsomes, rat and human liver S9 fractions) and in vivo (rat feces, urine, plasma) matrices by using liquid chromatography with high-resolution mass spectrometry and multiple-stage mass spectrometry: characterization of the diquinone metabolite supposedly responsible for the drug's hepatotoxicity. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:311-331. [PMID: 24395499 DOI: 10.1002/rcm.6787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Several mechanisms have been anticipated for the toxicity of amiodarone, such as oxidative stress, lipid peroxidation, phospholipidosis, free radical generation, etc. Amiodarone is structurally similar to benzbromarone, an uricosuric agent, which was withdrawn from European markets due to its idiosyncratic hepatotoxicity. A proposed reason behind the toxicity of benzbromarone was the production of a reactive ortho-diquinone metabolite, which was found to form adducts with glutathione. Therefore, taking a clue that a similar diquinone metabolite of amiodarone may be the reason for its hepatotoxicity, metabolite identification studies were carried out on the drug using liquid chromatography/mass spectrometry (LC/MS) tools. METHODS The studies involved in vitro (rat liver microsomes, rat liver S9 fraction, human liver S9 fraction) and in vivo (rat feces, urine, plasma) models, wherein the samples were analyzed by employing LC/HRMS, LC/MS(n) and HDE-MS. RESULTS AND CONCLUSIONS A total of 26 metabolites of amiodarone were detected in the investigated in vitro and in vivo matrices. The suspected ortho-diquinone metabolite was one of them. The formation of the same might be an added reason for the hepatotoxicity shown by the drug.
Collapse
Affiliation(s)
- Ninad Ramesh Varkhede
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | | | | | | |
Collapse
|
10
|
Khurana R, Bin Jardan YA, Wilkie J, Brocks DR. Breast milk concentrations of amiodarone, desethylamiodarone, and bisoprolol following short-term drug exposure: Two case reports. J Clin Pharmacol 2014; 54:828-31. [DOI: 10.1002/jcph.272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/25/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Rshmi Khurana
- Departments of Medicine and Obstetrics & Gynecology; University of Alberta; Edmonton AB Canada
- Royal Alexandra Hospital; Edmonton AB Canada
| | - Yousef A. Bin Jardan
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton AB Canada
| | - Jodi Wilkie
- Royal Alexandra Hospital; Edmonton AB Canada
| | - Dion R. Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton AB Canada
| |
Collapse
|
11
|
Investigating herb–drug interactions: The effect of Citrus aurantium fruit extract on the pharmacokinetics of amiodarone in rats. Food Chem Toxicol 2013; 60:153-9. [DOI: 10.1016/j.fct.2013.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022]
|
12
|
The protective effect of amiodarone in lung tissue of cecal ligation and puncture-induced septic rats: a perspective from inflammatory cytokine release and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 386:635-43. [DOI: 10.1007/s00210-013-0862-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
|
13
|
Rodrigues M, Alves G, Abrantes J, Falcão A. Herb-drug interaction of Fucus vesiculosus extract and amiodarone in rats: a potential risk for reduced bioavailability of amiodarone in clinical practice. Food Chem Toxicol 2013; 52:121-8. [PMID: 23178632 DOI: 10.1016/j.fct.2012.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/24/2012] [Accepted: 11/08/2012] [Indexed: 11/17/2022]
Abstract
Fucus vesiculosus is a seaweed claimed to be useful for obesity management. Therefore, considering the relationship between obesity and cardiovascular diseases, this work aimed to assess the potential for an herb-drug interaction among a standardized F. vesiculosus extract (GMP certificate) and amiodarone (a narrow therapeutic index drug) in rats. In a first pharmacokinetic study, rats were simultaneously co-administered with a single-dose of F. vesiculosus (575 mg/kg, p.o.) and amiodarone (50 mg/kg, p.o.); in a second study, rats were pre-treated during 14 days with F. vesiculosus (575 mg/kg/day, p.o.) and received amiodarone (50 mg/kg, p.o.) on the 15th day. Rats of the control groups received the corresponding volume of vehicle. After analysis of the pharmacokinetic data it deserves to be highlighted the significant decrease in the peak plasma concentration of amiodarone (55.4%) as well as the reduction of systemic exposure to the parent drug (~30%) following the simultaneous co-administration of F. vesiculosus extract and amiodarone. This paper reports, for the first time, the herb-drug interaction between F. vesiculosus and amiodarone, which determined a considerable decrease on amiodarone bioavailability in rats. Therefore, the therapeutic efficacy of amiodarone may be compromised by the concurrent administration of herbal slimming medicines/dietary supplements containing F. vesiculosus.
Collapse
Affiliation(s)
- Márcio Rodrigues
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | |
Collapse
|
14
|
Bueters T, Juric S, Sohlenius-Sternbeck AK, Hu Y, Bylund J. Rat poorly predicts the combined non-absorbed and presystemically metabolized fractions in the human. Xenobiotica 2013; 43:607-16. [DOI: 10.3109/00498254.2012.752117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Rodrigues M, Alves G, Rocha M, Queiroz J, Falcão A. First liquid chromatographic method for the simultaneous determination of amiodarone and desethylamiodarone in human plasma using microextraction by packed sorbent (MEPS) as sample preparation procedure. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 913-914:90-7. [DOI: 10.1016/j.jchromb.2012.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 11/30/2022]
|
16
|
Herb-Drug Interaction of Paullinia cupana (Guarana) Seed Extract on the Pharmacokinetics of Amiodarone in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:428560. [PMID: 23304200 PMCID: PMC3523151 DOI: 10.1155/2012/428560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/10/2012] [Indexed: 11/25/2022]
Abstract
Paullinia cupana is used in weight-loss programs as a constituent of medicinal/dietary supplements. This study aimed to assess a potential herb-drug interaction among a standardized (certified) Paullinia cupana extract and amiodarone (narrow therapeutic index drug) in rats. In a first pharmacokinetic study rats were simultaneously coadministered with a single dose of Paullinia cupana (821 mg/kg, p.o.) and amiodarone (50 mg/kg, p.o.), and in a second study rats were pretreated during 14 days with Paullinia cupana (821 mg/kg/day, p.o.) receiving amiodarone (50 mg/kg, p.o.) on the 15th day. Rats of the control groups received the corresponding volume of vehicle. Blood samples were collected at several time points after amiodarone dosing, and several tissues were harvested at the end of the experiments (24 h after dose). Plasma and tissue concentrations of amiodarone and its major metabolite (mono-N-desethylamiodarone) were measured and analysed. A significant reduction in the peak plasma concentration (73.2%) and in the extent of systemic exposure (57.8%) to amiodarone was found in rats simultaneously treated with Paullinia cupana and amiodarone; a decrease in tissue concentrations was also observed. This paper reports for the first time an herb-drug interaction between Paullinia cupana extract and amiodarone, which determined a great decrease on amiodarone bioavailability in rats.
Collapse
|
17
|
Brocks DR, Hamdy DA, Ben-Eltriki M, Patel JP, El-Kadi AO. Effect of rat serum lipoproteins on mRNA levels and amiodarone metabolism by cultured primary rat hepatocytes. J Pharm Sci 2012; 102:262-70. [PMID: 23132435 DOI: 10.1002/jps.23348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 01/12/2023]
Abstract
Hyperlipidemia can significantly increase amiodarone (AM) in vivo liver uptake and decrease its velocity of microsomal metabolism. Here, hepatocytes isolated from normolipidemic (NL) and hyperlipidemic rats were incubated with AM in the presence or absence of diluted NL or hyperlipidemic serum. The serum was added either as preincubation before drug, or concurrently with drug; incubations without rat serum were used as controls. The hepatocyte levels of mRNA for several proteins and enzymes were also measured. Disappearance of AM was seen up to 72 h. There was little difference between hepatocytes from NL or hyperlipidemic animals in intrinsic clearance (CL(int) ) of AM. The effect of hyperlipidemic rat serum, either before or with AM, was profound, causing a significant reduction in the CL(int) . Reductions were seen in mRNA for cytochrome P450 1A1, 3A2, and 2D1, some transporters, and low-density lipoprotein receptors after exposure of hepatocytes to lipoprotein-rich sera. In conclusion, exposure of isolated hepatocytes to hyperlipidemic serum caused decreases in AM CL(int) and lower mRNA levels for some proteins involved in the uptake and metabolism of AM. When coincubated with serum, an additional effect of increased binding to lipoproteins seemed to further contribute to a reduced CL of AM.
Collapse
|
18
|
Rodrigues M, Alves G, Ferreira A, Queiroz J, Falcao A. A Rapid HPLC Method for the Simultaneous Determination of Amiodarone and its Major Metabolite in Rat Plasma and Tissues: A Useful Tool for Pharmacokinetic Studies. J Chromatogr Sci 2012; 51:361-70. [DOI: 10.1093/chromsci/bms149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
19
|
Lu J, Jones AD, Harkema JR, Roth RA, Ganey PE. Amiodarone exposure during modest inflammation induces idiosyncrasy-like liver injury in rats: role of tumor necrosis factor-alpha. Toxicol Sci 2011; 125:126-33. [PMID: 21984482 PMCID: PMC3243747 DOI: 10.1093/toxsci/kfr266] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amiodarone [2-butyl-3-(3′,5′-diiodo-4’α-diethylaminoethoxybenzoyl)-benzofuran] (AMD), a class III antiarrhythmic drug, is known to cause idiosyncratic hepatotoxic reactions in human patients. One hypothesis for the etiology of idiosyncratic adverse drug reactions is that a concurrent inflammatory stress results in decreased threshold for drug toxicity. To explore this hypothesis in an animal model, male Sprague-Dawley rats were treated with nonhepatotoxic doses of AMD or its vehicle and with saline vehicle or lipopolysaccharide (LPS) to induce low-level inflammation. Elevated alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase, and gamma-glutamyltransferase activities as well as increased total bile acid concentrations in serum and midzonal hepatocellular necrosis were observed only in AMD/LPS-cotreated rats. The time interval between AMD and LPS administration was critical: AMD injected 16 h before LPS led to liver injury, whereas AMD injected 2–12 h before LPS failed to cause this response. The increase in ALT activity in AMD/LPS cotreatment showed a clear dose-response relationship with AMD as well as LPS. The metabolism and hepatic accumulation of AMD were not affected by LPS coexposure. Serum concentration of tumor necrosis factor-alpha (TNF) was significantly increased by LPS and was slightly prolonged by AMD. In Hepac1c7 cells, addition of TNF potentiated the cytotoxicity of both AMD and its primary metabolite, mono-N-desethylamiodarone. In vivo inhibition of TNF signaling by etanercept attenuated the AMD/LPS-induced liver injury in rats. In summary, AMD treatment during modest inflammation induced severe hepatotoxicity in rats, and TNF contributed to the induction of liver injury in this animal model of idiosyncratic AMD-induced liver injury.
Collapse
Affiliation(s)
- Jingtao Lu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
20
|
Sun H, Pang KS. Physiological modeling to understand the impact of enzymes and transporters on drug and metabolite data and bioavailability estimates. Pharm Res 2010; 27:1237-54. [PMID: 20372987 DOI: 10.1007/s11095-010-0049-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/04/2010] [Indexed: 01/27/2023]
Abstract
PURPOSE To obtain mathematical solutions that correlate drug and metabolite exposure and systemic bioavailability (F (sys)) with physiological determinants, transporters and enzymes. METHODS A series of physiologically-based pharmacokinetic (PBPK) models that included renal excretion and sequential metabolism within the intestine and/or liver as metabolite formation organs were developed. The area under the curve for drug (AUC) and formed metabolite (AUC{mi,P}) were solved by matrix inversion. RESULTS The PBPK models revealed that AUC{mi,P} was dependent on dispositional parameters (transport and elimination) for the drug and metabolite. The solution was unique for each metabolite formation organ and was dependent on the type of drug and metabolite elimination organs. The AUC ratio of the formed metabolite after oral and intravenous drug dosing was useful for determination of the fraction absorbed (F (abs)) and not the systemic bioavailability (F (sys)) when either intestine or liver was the only drug elimination organ. CONCLUSIONS The AUC ratio of the formed metabolite after oral and intravenous drug dosing differed from that for drug and would not provide F (sys). However, the AUC ratio of the formed metabolite for oral and intravenous drug dosing furnished the estimate of F (abs) when intestine or liver was the only drug metabolic organ.
Collapse
Affiliation(s)
- Huadong Sun
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | | |
Collapse
|
21
|
Shayeganpour A, Hamdy DA, Brocks DR. Effects of intestinal constituents and lipids on intestinal formation and pharmacokinetics of desethylamiodarone formed from amiodarone. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.12.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
To model the impact of intestinal components associated with a high fat meal on metabolism of amiodarone, rat everted intestinal sacs were evaluated for their ability to metabolize the drug to its active metabolite (desethylamiodarone) under a variety of conditions. The preparations were obtained from fasted rats or rats pretreated with 1% cholesterol in peanut oil. After isolation of the tissues, the intestinal segments were immersed in oxygenated Krebs Henseleit buffer containing varying concentrations of bile salts, cholesterol, lecithin and lipase with or without soybean oil emulsion as a source of triglycerides. Amiodarone uptake was similar between the five 10-cm segments isolated distally from the stomach. Desethylamiodarone was measurable in all segments. Based on the metabolite-to-drug concentration ratio within the tissues, there was little difference in metabolic efficiency between segments for any of the treatments. Between treatments, however, it appeared that the lowest level of metabolism was noted in rats pretreated with 1% cholesterol in peanut oil. This reduction in metabolic efficiency was not observed in gut sacs from the fasted rats to which soybean oil emulsion was directly added to the incubation media. Despite the apparent reduction in intestinal metabolism, there was no apparent change in the ratio of metabolite-to-drug area under the plasma concentration versus time ratios of fasted rats and those given 1% cholesterol in peanut oil, suggesting that the intestinal presystemic formation of desethylamiodarone is not substantial.
Collapse
Affiliation(s)
| | - Dalia A Hamdy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| | - Dion R Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| |
Collapse
|
22
|
Elsherbiny ME, Brocks DR. The effect of CYP1A induction on amiodarone disposition in the rat. J Pharm Sci 2010; 99:539-48. [DOI: 10.1002/jps.21841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Peternel L, Škrajnar Š, Černe M. A comparative study of four permanent cannulation procedures in rats. J Pharmacol Toxicol Methods 2010; 61:20-6. [DOI: 10.1016/j.vascn.2009.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/07/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
24
|
Experimental Hyperlipidemia Causes an Increase in the Electrocardiographic Changes Associated With Amiodarone. J Cardiovasc Pharmacol 2009; 53:1-8. [DOI: 10.1097/fjc.0b013e31819359d1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Shayeganpour A, Korashy H, Patel JP, El-Kadi AO, Brocks DR. The impact of experimental hyperlipidemia on the distribution and metabolism of amiodarone in rat. Int J Pharm 2008; 361:78-86. [DOI: 10.1016/j.ijpharm.2008.05.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 10/22/2022]
|