1
|
Sałagacka-Kubiak A, Zawada D, Saed L, Kordek R, Jeleń A, Balcerczak E. ABCG2 Gene and ABCG2 Protein Expression in Colorectal Cancer-In Silico and Wet Analysis. Int J Mol Sci 2023; 24:10539. [PMID: 37445716 DOI: 10.3390/ijms241310539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
ABCG2 (ATP-binding cassette superfamily G member 2) is a cell membrane pump encoded by the ABCG2 gene. ABCG2 can protect cells against compounds initiating and/or intensifying neoplasia and is considered a marker of stem cells responsible for cancer growth, drug resistance and recurrence. Expression of the ABCG2 gene or its protein has been shown to be a negative prognostic factor in various malignancies. However, its prognostic significance in colorectal cancer remains unclear. Using publicly available data, ABCG2 was shown to be underexpressed in colon and rectum adenocarcinomas, with lower expression compared to both the adjacent nonmalignant lung tissues and non-tumour lung tissues of healthy individuals. This downregulation could result from the methylation level of some sites of the ABCG2 gene. This was connected with microsatellite instability, weight and age among patients with colon adenocarcinoma, and with tumour localization, population type and age of patients for rectum adenocarcinoma. No association was found between ABCG2 expression level and survival of colorectal cancer patients. In wet analysis of colorectal cancer samples, neither ABCG2 gene expression, analysed by RT-PCR, nor ABCG2 protein level, assessed by immunohistochemistry, was associated with any clinicopathological factors or overall survival. An ABCG2-centered protein-protein interaction network build by STRING showed proteins were found to be involved in leukotriene, organic anion and xenobiotic transport, endodermal cell fate specification, and histone methylation and ubiquitination. Hence, ABCG2 underexpression could be an indicator of the activity of certain signalling pathways or protein interactors essential for colorectal carcinogenesis.
Collapse
Affiliation(s)
- Aleksandra Sałagacka-Kubiak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Dawid Zawada
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lias Saed
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
2
|
Negligible Effect of Quercetin in the Pharmacokinetics of Sulfasalazine in Rats and Beagles: Metabolic Inactivation of the Interaction Potential of Quercetin with BCRP. Pharmaceutics 2021; 13:pharmaceutics13121989. [PMID: 34959273 PMCID: PMC8703684 DOI: 10.3390/pharmaceutics13121989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer resistance protein (BCRP) mediates pharmacokinetic drug interactions. This study evaluated the potential of quercetin to inhibit and induce BCRP in vitro and in vivo. The inhibition of BCRP was investigated for quercetin and its metabolites using BCRP/mBcrp1-overexpressing MDCKII cells by flow cytometry. The induction of BCRP was investigated in LS174T cells using quantitative PCR. The expression of rat BCRP in rat small intestine, liver, and kidney was also measured after multiple administrations of quercetin in rats (50, 100, and 250 mg/kg, seven days). The in vivo pharmacokinetic changes of sulfasalazine following single or multiple administration of quercetin in rats and beagles were investigated. Although the induction effect of quercetin on BCRP was observed in vitro, the in vivo expression of rat BCRP was not changed by multiple quercetin administrations. Oral administration of quercetin did not affect the plasma concentration or pharmacokinetic parameters of sulfasalazine, regardless of dose and dosing period in either rats or beagles. In addition, the inhibitory effect of quercetin metabolites on BCRP/mBcrp1 was not observed. These results suggest that the in vivo drug interaction caused by quercetin via BCRP was negligible, and it may be related to the metabolic inactivation of quercetin for the inhibition of BCRP.
Collapse
|
3
|
Saib S, Delavenne X. Inflammation Induces Changes in the Functional Expression of P-gp, BCRP, and MRP2: An Overview of Different Models and Consequences for Drug Disposition. Pharmaceutics 2021; 13:pharmaceutics13101544. [PMID: 34683838 PMCID: PMC8539483 DOI: 10.3390/pharmaceutics13101544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters play a key role in drug pharmacokinetics. These membrane transporters expressed within physiological barriers can be a source of pharmacokinetic variability. Changes in ABC transporter expression and functionality may consequently affect the disposition of substrate drugs, resulting in different drug exposure. Inflammation, present in several acute and chronic diseases, has been identified as a source of modulation in drug transporter expression leading to variability in drug response. Its regulation may be particularly dangerous for drugs with a narrow therapeutic index. In this context, numerous in vitro and in vivo models have shown up- or downregulation in the expression and functionality of ABC transporters under inflammatory conditions. Nevertheless, the existence of contradictory data and the lack of standardization for the models used have led to a less conclusive interpretation of these data.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Faculté de Médecine, Université Jean Monnet, 42023 Saint-Etienne, France
- Correspondence: ; Tel.: +33-477-42-1443
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Laboratoire de Pharmacologie Toxicologie Gaz du Sang, CHU de Saint-Etienne, 42000 Saint-Etienne, France
| |
Collapse
|
4
|
Wu KC, Lin CJ. The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: Evidences in inflammatory diseases and age-related disorders. J Food Drug Anal 2018; 27:48-59. [PMID: 30648594 PMCID: PMC9298621 DOI: 10.1016/j.jfda.2018.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs) and membrane transporters play important roles in the absorption, distribution, metabolism, and excretion processes that determine the pharmacokinetics of drugs. Inflammation has been shown to regulate the expression and function of these drug-processing proteins. Given that inflammation is a common feature of many diseases, in this review, the general mechanisms for inflammation-mediated regulation of DMEs and transporters are described. Also, evidences regarding the aberrant expression of these drug-processing proteins in several inflammatory diseases and age-related disorders are provided.
Collapse
Affiliation(s)
- Kuo-Chen Wu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Kawase A, Tateishi S, Kazaoka A. Profiling of hepatic metabolizing enzymes and nuclear receptors in rats with adjuvant arthritis by targeted proteomics. Biopharm Drug Dispos 2018; 39:308-314. [DOI: 10.1002/bdd.2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Shunsuke Tateishi
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Akira Kazaoka
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| |
Collapse
|
6
|
Abstract
The elevated systemic levels of cytokines in rheumatoid arthritis (RA) can change the expression of metabolic enzymes and transporters. Given that statins are lipid-lowering agents frequently used in RA patients with concurrent cardiovascular diseases, the objective of the present study was to investigate the impacts of RA on the pharmacokinetics of statins of different disposition properties in rats with collagen-induced arthritis (CIA). The expression of metabolic enzymes and transporters in tissues of CIA rats were analyzed by RT-qPCR. Statins were given to CIA rats and controls through different routes, respectively. Blood samples were collected and analyzed by UPLC/MS/MS. Isolated microsomes and hepatocytes were used to determine the metabolic and uptake clearance of statins. The results showed that, compared with controls, the mRNA levels of intestinal Cyp3a1 and hepatic Cyp2c6, Cyp2c7, Cyp3a1, Oatp1a1, Oatp1b2, Oatp1a4, and Mrp2 were markedly decreased in the CIA rats. The maximal metabolic activities of Cyp2c and Cyp3a were reduced in liver microsomes of CIA rats. When given orally or injected through hepatic portal vein, the systemic levels of fluvastatin, simvastatin, and atorvastatin, but not of rosuvastatin and pravastatin, were increased in CIA rats. The metabolic clearance of simvastatin and hepatic uptake clearance of fluvastatin and atorvastatin were decreased in CIA rats. These findings suggest that the changes in the expression of enzymes and/or transporters in CIA rats differentially affect the pharmacokinetics of statins.
Collapse
|
7
|
Ikuta H, Kawase A, Iwaki M. Stereoselective Pharmacokinetics and Chiral Inversion of Ibuprofen in Adjuvant-induced Arthritic Rats. Drug Metab Dispos 2016; 45:316-324. [PMID: 27927688 DOI: 10.1124/dmd.116.073239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022] Open
Abstract
2-Arylpropionic acid (2-APA) nonsteroidal anti-inflammatory drugs are commonly used in racemic mixtures (rac) for clinical use. 2-APA undergoes unidirectional chiral inversion of the in vivo inactive R-enantiomer to the active S-enantiomer. Inflammation causes the reduction of metabolic activities of drug-metabolizing enzymes such as cytochrome P450 (P450) and UDP-glucuronosyltransferase. However, it is unclear whether inflammation affects the stereoselective pharmacokinetics and chiral inversion of 2-APA such as ibuprofen (IB). We examined the effects of inflammation on the pharmacokinetics of R-IB and S-IB after intravenous administration of rac-IB, R-IB, and S-IB to adjuvant-induced arthritic (AA) rats, an animal model of inflammation. The plasma protein binding of rac-IB, glucuronidation activities for R-IB and S-IB, and P450 contents of liver microsomes in AA rats were determined. Total clearance (CLtot) of IB significantly increased in AA rats, although the glucuronidation activities for IB, and P450 contents of liver microsomes decreased in AA rats. We presumed that the increased CLtot of IB in AA rats was caused by the elevated plasma unbound fraction of IB due to decreased plasma albumin levels in AA rats. Notably, CLtot of R-IB but not S-IB significantly increased in AA rats after intravenous administration of rac-IB. These results suggested that AA could affect drug efficacies after stereoselective changes in the pharmacokinetics of R-IB and S-IB.
Collapse
Affiliation(s)
- Hiroyuki Ikuta
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
8
|
Uraki M, Kawase A, Iwaki M. Stereoselective hepatic disposition of ibuprofen in the perfused liver of rat with adjuvant-induced arthritis. Xenobiotica 2016; 47:943-950. [DOI: 10.1080/00498254.2016.1252869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Misato Uraki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
9
|
Physiological and pathophysiological factors affecting the expression and activity of the drug transporter MRP2 in intestine. Impact on its function as membrane barrier. Pharmacol Res 2016; 109:32-44. [DOI: 10.1016/j.phrs.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/15/2022]
|
10
|
High ABCC2 and low ABCG2 gene expression are early events in the colorectal adenoma-carcinoma sequence. PLoS One 2015; 10:e0119255. [PMID: 25793771 PMCID: PMC4368545 DOI: 10.1371/journal.pone.0119255] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/11/2015] [Indexed: 12/26/2022] Open
Abstract
Development of colorectal cancer (CRC) may result from a dysfunctional interplay between diet, gut microbes and the immune system. The ABC transport proteins ABCB1 (P-glycoprotein, Multidrug resistance protein 1, MDR1), ABCC2 (MRP2) and ABCG2 (BCRP) are involved in transport of various compounds across the epithelial barrier. Low mRNA level of ABCB1 has previously been identified as an early event in colorectal carcinogenesis (Andersen et al., PLoS One. 2013 Aug 19;8(8):e72119). ABCC2 and ABCG2 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 106 adenoma cases (12 with severe dysplasia, 94 with mild-moderate dysplasia) and from 18 controls with normal endoscopy. We found significantly higher level of ABCC2 in adenomas with mild to moderate dysplasia and carcinoma tissue compared to the levels in unaffected tissue from the same individual (P = 0.037, P = 0.037, and P<0.0001) and in carcinoma and distant unaffected tissue from CRC cases compared to the level in the healthy individuals (P = 0.0046 and P = 0.036). Furthermore, ABCG2 mRNA levels were significantly lower in adenomas and carcinomas compared to the level in unaffected tissue from the same individuals and compared to tissue from healthy individuals (P<0.0001 for all). The level of ABCB2 in adjacent normal tissue was significantly higher than in tissue from healthy individuals (P = 0.011). In conclusion, this study found that ABCC2 and ABCG2 expression levels were altered already in mild/moderate dysplasia in carcinogenesis suggesting that these ABC transporters are involved in the early steps of carcinogenesis as previously reported for ABCB1. These results suggest that dysfunctional transport across the epithelial barrier may contribute to colorectal carcinogenesis.
Collapse
|
11
|
Kawase A, Sakata M, Yada N, Nakasaka M, Shimizu T, Kato Y, Iwaki M. Decreased radixin function for ATP-binding cassette transporters in liver in adjuvant-induced arthritis rats. J Pharm Sci 2014; 103:4058-4065. [PMID: 25331966 DOI: 10.1002/jps.24210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023]
Abstract
Pathophysiological changes are associated with alterations in the expression and function of numerous ADME-related proteins. We have previously demonstrated that the membrane localization of ATP-binding cassette (ABC) transporters in liver was decreased without change of total expression levels in adjuvant-induced arthritis (AA) in rats. Ezrin/radixin/moesin (ERM) proteins are involved in localization of some ABC transporters in canalicular membrane. The mRNA levels of radixin decreased significantly in liver but not kidney, small intestine, and brain. The mRNA levels of ezrin and moesin did not change in AA. The membrane localization of radixin was reduced in liver of AA and the ratios of activated radixin (p-radixin) to total radixin were decreased in AA, although the protein levels of radixin did not change in homogenate and membrane protein. To clarify whether AA affects the linker functions of ERM proteins, we examined the interactions between ERM proteins and ABC transporters. The interactions between radixin and ABC transporters were decreased in AA. In vitro studies using human hepatoma HepG2 cells showed that interleukin-1β decreased the mRNA levels of radixin and colocalization of radixin and Mrp2. Our results show that the decreased radixin functions affect the interaction between radixin and ABC transporters in inflammation.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Misato Sakata
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Nagisa Yada
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Misaki Nakasaka
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Takuya Shimizu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan.
| |
Collapse
|
12
|
Kawase A. Alterations in Expression and Function of ABC Transporters and ERM Proteins in Inflammation. YAKUGAKU ZASSHI 2014; 134:925-9. [DOI: 10.1248/yakushi.14-00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kinki University
| |
Collapse
|
13
|
Kawase A, Norikane S, Okada A, Adachi M, Kato Y, Iwaki M. Distinct alterations in ATP-binding cassette transporter expression in liver, kidney, small intestine, and brain in adjuvant-induced arthritic rats. J Pharm Sci 2014; 103:2556-64. [PMID: 24912442 DOI: 10.1002/jps.24043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/12/2022]
Abstract
Pathophysiological changes of infection or inflammation are associated with alterations in the production of numerous absorption, distribution, metabolism and excretion-related proteins. However, little information is available on the effects of inflammation on the expression levels and activities of ATP-binding cassette (ABC) transporters. We examined the effect of acute (on day 7) and chronic (on day 21) inflammation on the expression of ABC transporters in some major tissues in rat. Adjuvant-induced arthritis (AA) in rats was used as an animal model for inflammation. The mRNA levels of mdr1a and mdr1b encoding P-glycoprotein (P-gp) decreased significantly in livers of AA rats on day 21. Hepatic protein levels of P-gp, Mrp2, and Bcrp decreased significantly in membranes but not homogenates of AA rats after 7 days and after 21 days of treatment with adjuvant. Contrary to liver, protein levels of P-gp and Mrp2, but not Bcrp in kidney, increased significantly in membranes. The biliary excretion of rhodamine 123 was decreased in rats with chronic inflammation owing to decreases in efflux activities of P-gp. Our results showed that the expression of transporters in response to inflammation was organ dependent. In particular, hepatic and renal P-gp and Mrp2 exhibited opposite changes in membrane protein levels.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka, 577-8502, Japan
| | | | | | | | | | | |
Collapse
|
14
|
A pilot study of leukocyte expression patterns for drug metabolizing enzyme and transporter transcripts in autoimmune glomerulonephritis. Int J Clin Pharmacol Ther 2014; 52:303-13. [PMID: 24548980 PMCID: PMC4123858 DOI: 10.5414/cp201972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Leukocyte mRNA expression patterns of drug metabolizing enzyme genes and transporter genes that are relevant for the disposition of cyclophosphamide and mycophenolate were studied. The relationships between expression and patient-level data and pharmacokinetics were evaluated. METHODS The study included patients with glomerulonephritis secondary to lupus nephritis (SLE, n = 36), small vessel vasculitis (SVV, n = 35), healthy controls (HC, n = 10), and disease controls (VC, n = 5; LC, n = 5). Transcript assays targeted metabolizing enzymes (UGT1A7, UGT1A9, UGT2B7, CYP3A4, CYP2C9, CYP2B6) and transporters (ABCB1, ABCC2, ABCG2, SLCO1A2). Genotyping for specific variants was conducted. Group transcript fold-changes were evaluated. Patient level data was evaluated for transcript foldchange and disease, treatment, gender, race, and genotype. RESULTS Significant differences were noted in expression of UGT1A7, ABCB1, and ABCC2; for UGT1A7, SVV (0.17 ± 0.42; p < 0.05) and SLE (0.03 ± 0.1; p < 0.05) groups had lower expression than HC (0.79 ± 2.02). For ABCB1, SLE had a lower expression (0.33 ± 0.21; p < 0.05) than HCs (1 ± 0.82). For ABCG2, SVV group had a lower expression (0.17 ± 0.14; p < 0.05) than HCs (1 ± 1.82). Differences in expression of ABCC2 approached statistical significance with VC patients (2.02 ± 1.13) exhibiting higher expression than SVV patients (1.06 ± 1.11; p = 0.05). The relationships between transcript expression and patient-level data demonstrated; ABCC2 expression was different by race (1.26 ± 1.82 Caucasian versus 1.37 ± 0.86 non-Caucasian; p = 0.049) and CYP2B6 expression was different by treatment (2.07 ± 2.94 cyclophosphamide versus 0.45 ± 0.5 mycophenolate; p = 0.01). CONCLUSIONS The current study showed differential expression of drug metabolizing enzyme and transporter transcripts and contributes to the literature on transcript expression of drug transporters in leukocytes. The implications of altered local metabolism and transport in leukocytes may be important in autoimmune diseases and transplant patients where treatment is targeted to leukocytes.
Collapse
|
15
|
Cressman AM, Petrovic V, Piquette-Miller M. Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Expert Rev Clin Pharmacol 2014; 5:69-89. [DOI: 10.1586/ecp.11.66] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Kawase A, Wada S, Iwaki M. Changes in mRNA Expression and Activity of Xenobiotic Metabolizing Enzymes in Livers from Adjuvant-Induced Arthritis Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.46069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Arakawa H, Shirasaka Y, Haga M, Nakanishi T, Tamai I. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5. Biopharm Drug Dispos 2012; 33:332-41. [DOI: 10.1002/bdd.1809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/31/2012] [Accepted: 08/11/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Makoto Haga
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki; Noda; Chiba; 278-8510; Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi; Kanazawa; 920-1192; Japan
| | | |
Collapse
|
18
|
Shirasaka Y, Suzuki K, Nakanishi T, Tamai I. Differential Effect of Grapefruit Juice on Intestinal Absorption of Statins Due to Inhibition of Organic Anion Transporting Polypeptide and/or P-glycoprotein. J Pharm Sci 2011; 100:3843-53. [DOI: 10.1002/jps.22586] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/02/2011] [Accepted: 04/06/2011] [Indexed: 11/06/2022]
|
19
|
Shirasaka Y, Suzuki K, Shichiri M, Nakanishi T, Tamai I. Intestinal absorption of HMG-CoA reductase inhibitor pitavastatin mediated by organic anion transporting polypeptide and P-glycoprotein/multidrug resistance 1. Drug Metab Pharmacokinet 2010; 26:171-9. [PMID: 21206133 DOI: 10.2133/dmpk.dmpk-10-rg-073] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate the involvement of organic anion transporting polypeptide (OATP/Oatp) and P-glycoprotein (P-gp)/multidrug resistance 1 (MDR1/Mdr1) in intestinal absorption of pitavastatin. Pitavastatin was found to be a substrate for human OATP1A2, OATP2B1, and MDR1 and rat Oatp1a5, Oatp2b1, and Mdr1a in experiments using transporter-expressing Xenopus oocytes and LLC-PK1 cell systems. Naringin inhibited Oatp1a5- and Mdr1a-mediated transport of pitavastatin with IC(50) values of 18.5 and 541 µM, respectively. The difference in the IC(50) values of naringin for Oatp1a5 and Mdr1a-mediated pitavastatin transport may account for the complex concentration-dependent effect of naringin on the intestinal absorption of pitavastatin. Rat intestinal permeability of pitavastatin measured by the in situ closed-loop perfusion method was indeed significantly reduced by 200 µM naringin, but was significantly increased by 1000 µM naringin. Furthermore, the permeability was significantly increased by elacridar, a potent inhibitor of Mdr1, while the permeability was significantly decreased in the presence of both elacridar and naringin, suggesting that Oatp1a5 and Mdr1a are both involved in intestinal absorption of pitavastatin. Our present results indicate that OATP/Oatp and MDR1/Mdr1 play roles in the intestinal absorption of pitavastatin as influx and efflux transporters, respectively.
Collapse
Affiliation(s)
- Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | | | | | | | | |
Collapse
|
20
|
MacLean C, Moenning U, Reichel A, Fricker G. Regional absorption of fexofenadine in rat intestine. Eur J Pharm Sci 2010; 41:670-4. [DOI: 10.1016/j.ejps.2010.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/23/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
|
21
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
22
|
Intestinal Absorption of HMG-CoA Reductase Inhibitor Pravastatin Mediated by Organic Anion Transporting Polypeptide. Pharm Res 2010; 27:2141-9. [DOI: 10.1007/s11095-010-0216-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
|