1
|
Ithal D, Sukumaran SK, Bhattacharjee D, Vemula A, Nadella R, Mahadevan J, Sud R, Viswanath B, Purushottam M, Jain S. Exome hits demystified: The next frontier. Asian J Psychiatr 2021; 59:102640. [PMID: 33892377 DOI: 10.1016/j.ajp.2021.102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Severe mental illnesses such as schizophrenia and bipolar disorder have complex inheritance patterns, involving both common and rare variants. Whole exome sequencing is a promising approach to find out the rare genetic variants. We had previously reported several rare variants in multiplex families with severe mental illnesses. The current article tries to summarise the biological processes and pattern of expression of genes harbouring the aforementioned variants, linking them to known clinical manifestations through a methodical narrative review. Of the 28 genes considered for this review from 7 families with multiple affected individuals, 6 genes are implicated in various neuropsychiatric manifestations including some variations in the brain morphology assessed by magnetic resonance imaging. Another 15 genes, though associated with neuropsychiatric manifestations, did not have established brain morphological changes whereas the remaining 7 genes did not have any previously recorded neuropsychiatric manifestations at all. Wnt/b-catenin signaling pathway was associated with 6 of these genes and PI3K/AKT, calcium signaling, ERK, RhoA and notch signaling pathways had at least 2 gene associations. We present a comprehensive review of biological and clinical knowledge about the genes previously reported in multiplex families with severe mental illness. A 'disease in dish approach' can be helpful to further explore the fundamental mechanisms.
Collapse
Affiliation(s)
- Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Salil K Sukumaran
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Debanjan Bhattacharjee
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Alekhya Vemula
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Reeteka Sud
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Massa V, Avagliano L, Grazioli P, De Castro SCP, Parodi C, Savery D, Vergani P, Cuttin S, Doi P, Bulfamante G, Copp AJ, Greene NDE. Dynamic acetylation profile during mammalian neurulation. Birth Defects Res 2019; 112:205-211. [PMID: 31758757 PMCID: PMC7004172 DOI: 10.1002/bdr2.1618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) result from failure of neural tube closure during embryogenesis. These severe birth defects of the central nervous system include anencephaly and spina bifida, and affect 0.5-2 per 1,000 pregnancies worldwide in humans. It has been demonstrated that acetylation plays a pivotal role during neural tube closure, as animal models for defective histone acetyltransferase proteins display NTDs. Acetylation represents an important component of the complex network of posttranslational regulatory interactions, suggesting a possible fundamental role during primary neurulation events. This study aimed to assess protein acetylation contribution to early patterning of the central nervous system both in human and murine specimens. METHODS We used both human and mouse (Cited2 -/- ) samples to analyze the dynamic acetylation of proteins during embryo development through immunohistochemistry, western blot analysis and quantitative polymerase chain reaction. RESULTS We report the dynamic profile of histone and protein acetylation status during neural tube closure. We also report a rescue effect in an animal model by chemical p53 inhibition. CONCLUSIONS Our data suggest that the p53-acetylation equilibrium may play a role in primary neurulation in mammals.
Collapse
Affiliation(s)
- Valentina Massa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Laura Avagliano
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Sandra C P De Castro
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chiara Parodi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Dawn Savery
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Patrizia Vergani
- Department of Obstetrics and Gynaecology, Foundation MBBM, University of Milano-Bicocca, Monza, Italy
| | - Serena Cuttin
- Department of Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Patrizia Doi
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Andrew J Copp
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
3
|
Bottai D, Spreafico M, Pistocchi A, Fazio G, Adami R, Grazioli P, Canu A, Bragato C, Rigamonti S, Parodi C, Cazzaniga G, Biondi A, Cotelli F, Selicorni A, Massa V. Modeling Cornelia de Lange syndrome in vitro and in vivo reveals a role for cohesin complex in neuronal survival and differentiation. Hum Mol Genet 2019; 28:64-73. [PMID: 30239720 DOI: 10.1093/hmg/ddy329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS), which is reported to affect ∼1 in 10 000 to 30 000 newborns, is a multisystem organ developmental disorder with relatively mild to severe effects. Among others, intellectual disability represents an important feature of this condition. CdLS can result from mutations in at least five genes: nipped-B-like protein, structural maintenance of chromosomes 1A, structural maintenance of chromosomes 3, RAD21 cohesin complex component and histone deacetylase 8 (HDAC8). It is believed that mutations in these genes cause CdLS by impairing the function of the cohesin complex (to which all the aforementioned genes contribute to the structure or function), disrupting gene regulation during critical stages of early development. Since intellectual disorder might result from alterations in neural development, in this work, we studied the role of Hdac8 gene in mouse neural stem cells (NSCs) and in vertebrate (Danio rerio) brain development by knockdown and chemical inhibition experiments. Underlying features of Hdac8 deficiency is an increased cell death in the developing neural tissues, either in mouse NSCs or in zebrafish embryos.
Collapse
Affiliation(s)
- Daniele Bottai
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Raffaella Adami
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Adriana Canu
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Bragato
- Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- PhD program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Silvia Rigamonti
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Chiara Parodi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Andrea Biondi
- Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Bettini LR, Graziola F, Fazio G, Grazioli P, Scagliotti V, Pasquini M, Cazzaniga G, Biondi A, Larizza L, Selicorni A, Gaston-Massuet C, Massa V. Rings and Bricks: Expression of Cohesin Components is Dynamic during Development and Adult Life. Int J Mol Sci 2018; 19:E438. [PMID: 29389897 PMCID: PMC5855660 DOI: 10.3390/ijms19020438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
Cohesin complex components exert fundamental roles in animal cells, both canonical in cell cycle and non-canonical in gene expression regulation. Germline mutations in genes coding for cohesins result in developmental disorders named cohesinopaties, of which Cornelia de Lange syndrome (CdLS) is the best-known entity. However, a basic description of mammalian expression pattern of cohesins in a physiologic condition is still needed. Hence, we report a detailed analysis of expression in murine and human tissues of cohesin genes defective in CdLS. Using both quantitative and qualitative methods in fetal and adult tissues, cohesin genes were found to be ubiquitously and differentially expressed in human tissues. In particular, abundant expression was observed in hematopoietic and central nervous system organs. Findings of the present study indicate tissues which should be particularly sensitive to mutations, germline and/or somatic, in cohesin genes. Hence, this expression analysis in physiological conditions may represent a first core reference for cohesinopathies.
Collapse
Affiliation(s)
- Laura Rachele Bettini
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
- Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Federica Graziola
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Grazia Fazio
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Paolo Grazioli
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Mariavittoria Pasquini
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Giovanni Cazzaniga
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Andrea Biondi
- Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20154 Milan, Italy.
| | | | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Valentina Massa
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| |
Collapse
|