1
|
Zhao H, Lou G, Shao Y, Wang T, Wang H, Guo Q, Yang W, Liu H, Liao S. Competing Endogenous RNAs Crosstalk in Hippocampus: A Potential Mechanism for Neuronal Developing Defects in Down Syndrome. J Mol Neurosci 2024; 74:32. [PMID: 38536538 DOI: 10.1007/s12031-024-02205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/02/2024] [Indexed: 07/20/2024]
Abstract
Down syndrome (DS) is the most example of aneuploidy, resulting from an additional copy of all or part of chromosome 21. Competing endogenous RNAs (ceRNAs) play important roles in neuronal development and neurological defects. This study aimed to identify hub genes and synergistic crosstalk among ceRNAs in the DS fetal hippocampus as potential targets for the treatment of DS-related neurodegenerative diseases. We profiled differentially expressed long non-coding RNAs (DElncRNAs), differentially expressed circular RNAs (DEcircRNAs), differentially expressed microRNAs (DEmiRNAs), and differentially expressed messenger RNAs (DEmRNAs) in hippocampal samples from patients with or without DS. Functional enrichment analysis and gene set enrichment analysis were performed, and chromosome 21-related ceRNA and protein-protein interaction networks were constructed. Additionally, the correlations between lncRNA-mRNA and miRNA-mRNA expression in the samples and HEK293T cells were validated. Our finding of changes in the expression of some key genes and ncRNAs on chromosome 21 in DS might not fully conform to the gene dosage hypothesis. Moreover, we found that four lncRNAs (MIR99AHG, PLCB4, SNHG14, GIGYF2) and one circRNA (hsa_circ_0061697) may competitively bind with three miRNAs (hsa-miR-548b-5p, miR-730-5p, and hsa-miR-548i) and subsequently regulate five mRNAs (beta-1,3-galactosyltransferase 5 [B3GALT5], helicase lymphoid-specific [HELLS], thrombospondin-2 [THBS2], glycinamide ribonucleotide transformylase [GART], clathrin heavy chain like 1 [CLTCL1]). These RNAs, whether located on chromosome 21 or not, interact with each other and might activate the PI3K/Akt/mTOR and Wnt signaling pathways, which are involved in autophagosome formation and tau hyperphosphorylation, possibly leading to adverse consequences of trisomy 21. These findings provide researchers with a better understanding of the fundamental molecular mechanisms underlying DS-related progressive defects in neuronal development.
Collapse
Affiliation(s)
- Huiru Zhao
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiyu Lou
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yupu Shao
- Experimental Center, Department of Basic Medicine, Henan Medical College, Zhengzhou, China
| | - Tao Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongdan Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiannan Guo
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenke Yang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Liu
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiu Liao
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Wang P, Huang Y, Sun B, Chen H, Ma Y, Liu Y, Yang T, Jin H, Qiao Y, Cao Y. Folic acid blocks ferroptosis induced by cerebral ischemia and reperfusion through regulating folate hydrolase transcriptional adaptive program. J Nutr Biochem 2024; 124:109528. [PMID: 37979712 DOI: 10.1016/j.jnutbio.2023.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is notably linked with folic acid (FA) deficiency. The aim of our investigation was to explore the effects and underlying mechanisms by which FA mitigates I/R, specifically through regulating the GCPII transcriptional adaptive program. Initially, we discovered that following cerebral I/R, levels of FA, methionine synthase (MTR), and methylenetetrahydrofolate reductase (MTHFR) were decreased, while GCPII expression was elevated. Secondly, administering FA could mitigate cognitive impairment and neuronal damage induced by I/R. Thirdly, the mechanism of FA supplementation involved suppressing the transcriptional factor Sp1, subsequently inhibiting GCPII transcription, reducing Glu content, obstructing cellular ferroptosis, and alleviating cerebral I/R injury. In summary, our data demonstrate that FA affords protection against cerebral I/R injury by inhibiting the GCPII transcriptional adaptive response. These findings unveil that targeting GCPII might be a viable therapeutic strategy for cerebral I/R.
Collapse
Affiliation(s)
- Peng Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yangyang Huang
- Department of Pediatrics, Daqing People's Hospital, Daqing, Heilongjiang, China
| | - Buxun Sun
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Hongpeng Chen
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - YiFan Ma
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yuhang Liu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Tao Yang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Hongbo Jin
- Department of Physiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yuandong Qiao
- Department of Genetics, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.
| | - Yongggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.
| |
Collapse
|
3
|
Özyer S, Ozel S, Karabulut E, Kahyaoglu S, Neselioglu S, Erel O, Engin-Ustun Y. Oxidative-Antioxidative Markers in Pregnant Women with Fetal Neural Tube Defects. Fetal Pediatr Pathol 2021; 40:93-102. [PMID: 31762366 DOI: 10.1080/15513815.2019.1686783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We compared markers of oxidative stress (OS) in mothers with and without fetal neural tube defects (NTDs). Methods: Pregnant mothers in the second trimester with NTD-affected fetuses and age, gestational age, and body mass index-matched control mothers with unaffected fetuses were included. Maternal serum thiol-disulfide homeostasis parameters and ischemia-modified albumin (IMA) were measured. Results: In 30 affected mothers compared to 31 controls, disulfide levels, disulfide/native thiol, and disulfide/total thiol ratios were higher; native and total thiol levels and native thiol/total thiol ratios were lower (p < 0.001). Mothers with NTD-affected fetuses had higher levels of IMA than controls (p = 0.025). Conclusion: The thiol-disulfide homeostasis balance was shifted in favor of disulfide, suggesting increased thiol oxidation and OS in the second trimester of NTD-affected pregnancies. Maternal levels of IMA, an oxidatively altered form of albumin, thus a measure of OS, were higher in NTD-affected second trimester pregnancies compared to controls.
Collapse
Affiliation(s)
- Sebnem Özyer
- University of Health Sciences, Zekai Tahir Burak Women's Health, Health Application and Research Center, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Sule Ozel
- University of Health Sciences, Zekai Tahir Burak Women's Health, Health Application and Research Center, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Ercan Karabulut
- Yildirim Beyazit University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey
| | - Serkan Kahyaoglu
- University of Health Sciences, Zekai Tahir Burak Women's Health, Health Application and Research Center, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Salim Neselioglu
- Yildirim Beyazit University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey
| | - Ozcan Erel
- Yildirim Beyazit University, Faculty of Medicine, Department of Clinical Biochemistry, Ankara, Turkey
| | - Yaprak Engin-Ustun
- University of Health Sciences, Zekai Tahir Burak Women's Health, Health Application and Research Center, Department of Obstetrics and Gynecology, Ankara, Turkey
| |
Collapse
|