1
|
Wang YQ, Qu HX, Dong YW, Qi JJ, Wei HK, Sun H, Jiang H, Zhang JB, Sun BX, Liang S. Inhibition of FSP1 impairs early embryo developmental competence in pigs. Theriogenology 2024; 214:257-265. [PMID: 37944430 DOI: 10.1016/j.theriogenology.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Ferroptosis suppressor protein 1 (FSP1) is a glutathione-independent ferroptosis inhibitory factor. FSP1 has been found to play a crucial role in the regulation of mitochondrial function and ferroptosis. However, its function in porcine early embryonic development remains unknown. In the present research, we found that FSP1 was expressed at different stages during porcine early embryo development. Compared with the control condition, inhibition of FSP1 reduced the cleavage rate at 24 h and 48 h and the blastocyst rate at 144 h. In addition, inhibiting FSP1 reduced the blastocyst diameter, total cell number, and proliferation capacity. Further analysis showed that inhibition of FSP1 significantly increased the levels of ferrous ions (Fe2+) and MDA but not GPX4. We also found that inhibition of FSP1 significantly decreased mitochondrial membrane potential and ATP levels, which in turn caused excessive accumulation of ROS and decreased the levels of GSH and the activity of the intracellular antioxidant enzymes SOD and CAT in embryos. In conclusion, FSP1, an important regulator, participates in regulating the development and quality of porcine early embryos. Inhibition of FSP1 impairs blastocyst formation, induces glutathione-independent ferroptosis, and further leads to oxidative stress due to mitochondrial dysfunction, ultimately affecting the developmental competence and impairing the quality of porcine early embryos.
Collapse
Affiliation(s)
- Yan-Qiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - He-Xuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan-Wei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hua-Kai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Jiang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Xuefei Y, Xinyi Z, Qing C, Dan Z, Ziyun L, Hejuan Z, Xindong X, Jianhua F. Effects of Hyperoxia on Mitochondrial Homeostasis: Are Mitochondria the Hub for Bronchopulmonary Dysplasia? Front Cell Dev Biol 2021; 9:642717. [PMID: 33996802 PMCID: PMC8120003 DOI: 10.3389/fcell.2021.642717] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are involved in energy metabolism and redox reactions in the cell. Emerging data indicate that mitochondria play an essential role in physiological and pathological processes of neonatal lung development. Mitochondrial damage due to exposure to high concentrations of oxygen is an indeed important factor for simplification of lung structure and development of bronchopulmonary dysplasia (BPD), as reported in humans and rodent models. Here, we comprehensively review research that have determined the effects of oxygen environment on alveolar development and morphology, summarize changes in mitochondria under high oxygen concentrations, and discuss several mitochondrial mechanisms that may affect cell plasticity and their effects on BPD. Thus, the pathophysiological effects of mitochondria may provide insights into targeted mitochondrial and BPD therapy.
Collapse
Affiliation(s)
- Yu Xuefei
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Zhao Xinyi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Cai Qing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Zhang Dan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Liu Ziyun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Zheng Hejuan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Xue Xindong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Fu Jianhua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| |
Collapse
|