1
|
Leung ECH, Jain P, Michealson MA, Choi H, Ellsworth-Kopkowski A, Valenzuela CF. Recent breakthroughs in understanding the cerebellum's role in fetal alcohol spectrum disorder: A systematic review. Alcohol 2024; 119:37-71. [PMID: 38097146 PMCID: PMC11166889 DOI: 10.1016/j.alcohol.2023.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/14/2024]
Abstract
Exposure to alcohol during fetal development can lead to structural and functional abnormalities in the cerebellum, a brain region responsible for motor coordination, balance, and specific cognitive functions. In this systematic review, we comprehensively analyze a vast body of research conducted on vertebrate animals and humans over the past 13 years. We identified studies through PubMed and screened them following PRISMA guidelines. Data extraction and quality analysis were conducted using Covidence systematic review software. A total of 108 studies met our inclusion criteria, with the majority (79 studies) involving vertebrate animal models and 29 studies focusing on human subjects. Animal models included zebrafish, mice, rats, sheep, and non-human primates, investigating the impact of ethanol on cerebellar structure, gene/protein expression, physiology, and cerebellar-dependent behaviors. Additionally, some animal studies explored potential therapeutic interventions against ethanol-induced cerebellar damage. The human studies predominantly adopted cohort designs, exploring the effects of prenatal alcohol exposure on cerebellar structure and function. Certain human studies delved into innovative cerebellar-based diagnostic approaches for fetal alcohol spectrum disorder (FASD). The collective findings from these studies clearly indicate that the cerebellum is involved in various neurophysiological deficits associated with FASD, emphasizing the importance of evaluating both cerebellar structure and function in the diagnostic process for this condition. Moreover, this review sheds light into potential therapeutic strategies that can mitigate prenatal alcohol exposure-induced cerebellar damage.
Collapse
Affiliation(s)
- Eric C H Leung
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Priyanka Jain
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Marisa A Michealson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Hyesun Choi
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexis Ellsworth-Kopkowski
- Health Sciences Library & Informatics Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
2
|
Janampalli M, Kitchen ST, Vatolin S, Tang N, He M, Bearer CF. Choline supplementation mitigates effects of bilirubin in cerebellar granule neurons in vitro. Pediatr Res 2024; 96:97-103. [PMID: 38172213 DOI: 10.1038/s41390-023-02968-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Premature infants may suffer from high levels of bilirubin that could lead to neurotoxicity. Bilirubin has been shown to decrease L1-mediated ERK1/2 signaling, L1 phosphorylation, and L1 tyrosine 1176 dephosphorylation. Furthermore, bilirubin redistributes L1 into lipid rafts (LR) and decreases L1-mediated neurite outgrowth. We demonstrate that choline supplementation improves L1 function and signaling in the presence of bilirubin. METHODS Cerebellar granule neurons (CGN) were cultured with and without supplemental choline, and the effects on L1 signaling and function were measured in the presence of bilirubin. L1 activation of ERK1/2, L1 phosphorylation and dephosphorylation were measured. L1 distribution in LR was quantified and neurite outgrowth of CGN was determined. RESULTS Forty µM choline significantly reduced the effect of bilirubin on L1 activation of ERK1/2 by 220% (p = 0.04), and increased L1 triggered changes in tyrosine phosphorylation /dephosphorylation of L1 by 34% (p = 0.026) and 35% (p = 0.02) respectively. Choline ameliorated the redistribution of L1 in lipid rafts by 38% (p = 0.02) and increased L1-mediated mean neurite length by 11% (p = 0.04). CONCLUSION Choline pretreatment of CGN significantly reduced the disruption of L1 function by bilirubin. The supplementation of pregnant women and preterm infants with choline may increase infant resilience to the effects of bilirubin. IMPACT This article establishes choline as an intervention for the neurotoxic effects of bilirubin on lipid rafts. This article provides clear evidence toward establishing one intervention for bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into the mechanism of the ameliorative effect of choline on bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Mrinaj Janampalli
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Spencer T Kitchen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Sergei Vatolin
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Division of Neonatology, Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
4
|
Waddell J, Rickman NC, He M, Tang N, Bearer CF. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr Res 2021; 89:1414-1419. [PMID: 33027804 PMCID: PMC8024424 DOI: 10.1038/s41390-020-01187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bilirubin is produced by the breakdown of hemoglobin and is normally catabolized and excreted. Neurotoxic accumulation of serum bilirubin often occurs in premature infants. The homozygous Gunn rat lacks uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), the enzyme needed to biotransform bilirubin. This rodent model of hyperbilirubinemia emulates many aspects of bilirubin toxicity observed in the human infant. We demonstrate that choline supplementation in early postnatal development is neuroprotective in the choline-restricted Gunn rat, when hyperbilirubinemia is induced on postnatal day 5. METHODS We first compared behaviors and cerebellar weight of pups born to dams consuming regular rat chow to those of dams consuming choline-restricted diets. Second, we measured behaviors and cerebellar weights of pups born to choline-restricted dams, reared on a choline-restricted diet, supplemented with or without choline, and treated with or without sulfadimethoxine (SDMX). RESULTS A choline-restricted diet did not change the behavioral outcomes, but cerebellar weight was reduced in the choline-restricted group regardless of genotype or SDMX administration. SDMX induced behavioral deficits in jj pups, and choline supplementation improved most behavioral effects and cerebellar weight in SDMX-treated jj rats. CONCLUSIONS These results suggest that choline may be used as a safe and effective neuroprotective intervention against hyperbilirubinemia in the choline-deficient premature infant. IMPACT This article investigates the effect of neonatal jaundice/bilirubin neurotoxicity on cerebellar-mediated behaviors. This article explores the potential use of choline as an intervention capable of ameliorating the effect of bilirubin on the choline-restricted developing brain. This article opens the door for future studies on the action of choline in the presence of hyperbilirubinemia, especially in preterm neonates.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas C Rickman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Kitchen ST, Tang N, He M, Ly E, Mooney SM, Bearer CF. Bilirubin inhibits lipid raft dependent functions of L1 cell adhesion molecule in rat pup cerebellar granule neurons. Pediatr Res 2021; 89:1389-1395. [PMID: 32937649 PMCID: PMC9323028 DOI: 10.1038/s41390-020-01156-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanism of bilirubin neurotoxicity is poorly understood. We hypothesize that bilirubin inhibits the function of lipid rafts (LR), microdomains of the plasma membrane critical for signal transduction. To test this hypothesis, we measured the effect of free bilirubin (Bf) between 7.6 and 122.5 nM on LR-dependent functions of L1 cell adhesion molecule (L1). METHODS Cerebellar granule neurons (CGN) were plated on poly-L-lysine overnight, and neurite length was determined after 1 h treatment with L1 alone or L1 and bilirubin. L1 activation of ERK1/2 was measured in CGN in the presence or absence of bilirubin. The effect of bilirubin on L1 distribution in LR was quantitated, and the localization of bilirubin to LR was determined. RESULTS The addition of bilirubin to CGN treated with L1 significantly decreased neurite length compared to L1 alone. L1 activation of ERK1/2 was inhibited by bilirubin. Bilirubin redistributed L1 into LR. Bilirubin was associated only with LR-containing fractions of a sucrose density gradient. CONCLUSION Bf significantly inhibits LR-dependent functions of L1 and are found only associated with LR, suggesting one mechanism by which bilirubin may exert neurotoxicity is through the dysfunction of protein-LR interactions. IMPACT This article establishes lipid rafts as a target for the neurotoxic effects of bilirubin. This article provides clear evidence toward establishing one mechanism of bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into lipid raft dependent functions, and its role in neurodevelopmental outcome.
Collapse
Affiliation(s)
- Spencer T. Kitchen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21218
| | - Eric Ly
- Division of Neonatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandra M. Mooney
- Department of Nutrition, University of North Carolina School of Public Health, Chapel Hill, North Carolina, 27514
| | - Cynthia F. Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106,Corresponding author: Cynthia F. Bearer, M.D., Ph.D., Department of Pediatrics, 2109 Adelbert Rd, 8th floor, Cleveland, OH 44106, Tel. (410) 328-6003, Fax. (410) 328-1076,
| |
Collapse
|
6
|
Milbocker KA, Klintsova AY. Examination of cortically projecting cholinergic neurons following exercise and environmental intervention in a rodent model of fetal alcohol spectrum disorders. Birth Defects Res 2020; 113:299-313. [PMID: 33174398 DOI: 10.1002/bdr2.1839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/13/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Up to 1 in 5 infants in the United States are exposed to alcohol prenatally, resulting in neurodevelopmental deficits categorized as fetal alcohol spectrum disorders (FASD). Choline supplementation ameliorates some deficits, suggesting that alcohol exposure (AE) perturbs cholinergic neurotransmission and development. Behavioral interventions, which upregulate cholinergic neurotransmission, rescue cognitive deficits in rodent models of FASD. METHODS We investigated the impacts of two interventions (either wheel-running (WR) or "super intervention," WR plus exposure to a complex environment) on cholinergic neuronal morphology in the nucleus basalis of Meynert (NBM), the source of cortical cholinergic input, and prefrontal cortex (PFC) in a rodent model of FASD. One third of the total 47 male pups received intragastric intubation of ethanol in milk substitute during postnatal days (PD) 4-9. Another third served as sham-intubated procedural controls while the final third served as suckle controls. Rats from each group were exposed to either intervention during PD 30-72. Choline acetyltransferase (ChAT+ ) and acetylcholinesterase staining were used to quantify cholinergic neuron number, soma volume, and axon number. RESULTS Our data indicate a main effect of postnatal treatment on ChAT+ neuron number in NBM in adulthood. Post hoc analysis demonstrates that ChAT+ neuron number is reduced in AE compared to suckle control rodents (p < .01). CONCLUSIONS We examined the cytoarchitectonics of cholinergic neurons in NBM and PFC in adulthood following early postnatal AE and two interventions. We show that AE reduces ChAT+ neuron number in NBM, and this is not mitigated by either intervention.
Collapse
Affiliation(s)
- Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|