1
|
Response to the letter to editor: Can niacin supplementation prevent congenital malformations associated with maternal use of proton pump inhibitors? Eur J Nutr 2023; 62:1055-1056. [PMID: 36449092 DOI: 10.1007/s00394-022-03061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
|
2
|
Selzer EB, Blain D, Hufnagel RB, Lupo PJ, Mitchell LE, Brooks BP. Review of Evidence for Environmental Causes of Uveal Coloboma. Surv Ophthalmol 2021; 67:1031-1047. [PMID: 34979194 DOI: 10.1016/j.survophthal.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Uveal coloboma is a condition defined by missing ocular tissues and is a significant cause of childhood blindness. It occurs from a failure of the optic fissure to close during embryonic development,and may lead to missing parts of the iris, ciliary body, retina, choroid, and optic nerve. Because there is no treatment for coloboma, efforts have focused on prevention. While several genetic causes of coloboma have been identified, little definitive research exists regarding the environmental causes of this condition. We review the current literature on environmental factors associated with coloboma in an effort to guide future research and preventative counseling related to this condition.
Collapse
Affiliation(s)
- Evan B Selzer
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
3
|
Effect of maternal dietary niacin intake on congenital anomalies: a systematic review and meta-analysis. Eur J Nutr 2021; 61:1133-1142. [PMID: 34748060 DOI: 10.1007/s00394-021-02731-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The significance of niacin in embryonic development has clinical implications in the counseling of pregnant women and may be used to inform nutrition recommendations. This study, therefore, aims to review the associations between maternal periconceptional niacin intake and congenital anomalies. METHODS A systematic search of Ovid MEDLINE, ClinicalTrials.gov, AMED, CENTRAL, Emcare, EMBASE, Maternity & Infant Care and Google Scholar was conducted between inception and 30 September 2020. Medical subject heading terms included "nicotinic acids" and related metabolites, "congenital anomalies" and specific types of congenital anomalies. Included studies reported the association between maternal niacin intake and congenital anomalies in their offspring and reported the measure of association. Studies involved solely the women with co-morbidities, animal, in vitro and qualitative studies were excluded. The risk of bias of included studies was assessed using the Newcastle-Ottawa Scale (NOS). A random effects-restricted maximum likelihood model was used to obtain summary estimates, and multivariable meta-regression model was used to adjust study-level covariates. RESULTS Of 21,908 retrieved citations, 14 case-control studies including 35,743 women met the inclusion criteria. Ten studies were conducted in the U.S, three in Netherlands and one in South Africa. The meta-analysis showed that expectant mothers with an insufficient niacin intake were significantly more likely to have babies with congenital abnormalities (odds ratio 1.13, 95% confidence interval 1.02-1.24) compared to mothers with adequate niacin intake. A similar association between niacin deficiency and congenital anomalies was observed (OR 1.15, 95% CI 1.03-1.26) when sensitivity analysis was conducted by quality of the included studies. Meta-regression showed neither statistically significant impact of study size (p = 0.859) nor time of niacin assessment (p = 0.127). The overall quality of evidence used is high-thirteen studies achieved a rating of six or seven stars out of a possible nine based on the NOS. CONCLUSION Inadequate maternal niacin intake is associated with an increased risk of congenital anomalies in the offspring. These findings may have implications in dietary counseling and use of niacin supplementation during pregnancy.
Collapse
|
4
|
Hsiao TH, Lee GH, Chang YS, Chen BH, Fu TF. The Incoherent Fluctuation of Folate Pools and Differential Regulation of Folate Enzymes Prioritize Nucleotide Supply in the Zebrafish Model Displaying Folate Deficiency-Induced Microphthalmia and Visual Defects. Front Cell Dev Biol 2021; 9:702969. [PMID: 34268314 PMCID: PMC8277299 DOI: 10.3389/fcell.2021.702969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Congenital eye diseases are multi-factorial and usually cannot be cured. Therefore, proper preventive strategy and understanding the pathomechanism underlying these diseases become important. Deficiency in folate, a water-soluble vitamin B, has been associated with microphthalmia, a congenital eye disease characterized by abnormally small and malformed eyes. However, the causal-link and the underlying mechanism between folate and microphthalmia remain incompletely understood. Methods We examined the eye size, optomotor response, intracellular folate distribution, and the expression of folate-requiring enzymes in zebrafish larvae displaying folate deficiency (FD) and ocular defects. Results FD caused microphthalmia and impeded visual ability in zebrafish larvae, which were rescued by folate and dNTP supplementation. Cell cycle analysis revealed cell accumulation at S-phase and sub-G1 phase. Decreased cell proliferation and increased apoptosis were found in FD larvae during embryogenesis in a developmental timing-specific manner. Lowered methylenetetrahydrofolate reductase (mthfr) expression and up-regulated methylenetetrahydrofolate dehydrogenase (NADP+-dependent)-1-like (mthfd1L) expression were found in FD larvae. Knocking-down mthfd1L expression worsened FD-induced ocular anomalies; whereas increasing mthfd1L expression provided a protective effect. 5-CH3-THF is the most sensitive folate pool, whose levels were the most significantly reduced in response to FD; whereas 10-CHO-THF levels were less affected. 5-CHO-THF is the most effective folate adduct for rescuing FD-induced microphthalmia and defective visual ability. Conclusion FD impeded nucleotides formation, impaired cell proliferation and differentiation, caused apoptosis and interfered active vitamin A production, contributing to ocular defects. The developmental timing-specific and incoherent fluctuation among folate adducts and increased expression of mthfd1L in response to FD reflect the context-dependent regulation of folate-mediated one-carbon metabolism, endowing the larvae to prioritize the essential biochemical pathways for supporting the continuous growth in response to folate depletion.
Collapse
Affiliation(s)
- Tsun-Hsien Hsiao
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gang-Hui Lee
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Sheng Chang
- Department of Ophthalmology, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tzu-Fun Fu
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Diatewa BM, Maneh N, Domingo AS, Gnansa KEI, Ayikoue YFA, Balo KP. [Congenital ocular anomalies at the University Hospital Campus in Lomé, Togo]. Pan Afr Med J 2021; 38:79. [PMID: 33889245 PMCID: PMC8033191 DOI: 10.11604/pamj.2021.38.79.21757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction les anomalies congénitales oculaires sont des entités cliniques rares dans le monde. Le but de cette étude est de décrire les aspects épidémiologiques et cliniques des anomalies congénitales oculaires au Centre Hospitalier Universitaire-Campus de Lomé. Méthodes une étude rétrospective a été réalisée de janvier 2016 à décembre 2018 (3 ans) dans le service d´ophtalmologie du Centre Hospitalier Universitaire-Campus de Lomé. Elle a concerné les enfants porteurs d´anomalies congénitales oculaires. Les variables d´étude ont été: le sexe; l´âge au moment du diagnostic; le type d´anomalies congénitales oculaires; la latéralité. Résultats sur 2621 enfants examinés durant la période d´étude, 103 (3,9%) étaient porteurs d´anomalies congénitales oculaires. Des 103 patients, il y avait 60 (58,2%) garçons et 43 (41,8%) filles. L´âge moyen de diagnostic était de 16 ± 5,2 mois (extrêmes: 1 mois et 5 ans). L´anomalie congénitale oculaire la plus fréquente était la cataracte (53,4 %). Les atteintes unilatérales étaient prépondérantes (56,3%). Les anomalies congénitales oculaires étaient: isolées (82,5%) ; associées aux anomalies systémiques (11,7%); associées entre elles (5,8%). Conclusion ces résultats indiquent que les caractéristiques épidémiologiques et cliniques des anomalies congénitales oculaires se rapprochent de celles rapportées dans la littérature. Cependant, dans notre milieu, la fréquence des anomalies congénitales oculaires et l´âge de diagnostic sont élevés. Il est important de diagnostiquer tôt les anomalies congénitales oculaires dans le but d´assurer la prise en charge et de préserver la fonction visuelle.
Collapse
Affiliation(s)
| | - Nidain Maneh
- Service d´Ophtalmologie, Centre Hospitalier Universitaire, Campus de Lomé, Lomé, Togo.,Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
| | | | | | | | | |
Collapse
|
6
|
Craenen K, Verslegers M, Callaerts-Vegh Z, Craeghs L, Buset J, Govaerts K, Neefs M, Gsell W, Baatout S, D'Hooge R, Himmelreich U, Moons L, Benotmane MA. Folic Acid Fortification Prevents Morphological and Behavioral Consequences of X-Ray Exposure During Neurulation. Front Behav Neurosci 2021; 14:609660. [PMID: 33488367 PMCID: PMC7820780 DOI: 10.3389/fnbeh.2020.609660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies suggested a causal link between pre-natal exposure to ionizing radiation and birth defects such as microphthalmos and exencephaly. In mice, these defects arise primarily after high-dose X-irradiation during early neurulation. However, the impact of sublethal (low) X-ray doses during this early developmental time window on adult behavior and morphology of central nervous system structures is not known. In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects and persistent radiation-induced anomalies has remained unexplored. To assess the efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented radiation-induced (1.0 Gy) anophthalmos, exencephaly and gastroschisis at E18, and reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted radiation-induced impairments in vision and olfaction, which were evidenced after exposure to doses ≥0.1 Gy. These findings coincided with the observation of a reduction in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial length of the eye following exposure to 0.5 Gy. Finally, MRI studies revealed a volumetric decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5 Gy irradiation, which could be partially ameliorated after FA food fortification. Altogether, our study is the first to offer detailed insights into the long-term consequences of X-ray exposure during neurulation, and supports the use of FA as a radioprotectant and antiteratogen to counter the detrimental effects of X-ray exposure during this crucial period of gestation.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Livine Craeghs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Kristof Govaerts
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Neefs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Willy Gsell
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lieve Moons
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| |
Collapse
|
7
|
Gannon BM, Jones C, Mehta S. Vitamin A Requirements in Pregnancy and Lactation. Curr Dev Nutr 2020; 4:nzaa142. [PMID: 32999954 PMCID: PMC7513584 DOI: 10.1093/cdn/nzaa142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pregnancy and lactation are critical life stages with unique nutritional requirements, including for vitamin A (VA). Current DRIs for VA were published in 2001. The objective of this review was to identify and categorize evidence related to VA requirements in pregnancy and lactation since these DRIs were formulated. We searched MEDLINE and included articles according to an analytic framework of maternal VA exposure on status and health outcomes in the mother-child dyad. Intermediate and indirect evidence supports that maternal VA intakes can impact the mother's VA status, breastmilk, and health outcomes, as well as the child's VA status and select health outcomes. Food-based approaches can lead to more sustained, sufficient VA status in mothers and children. Research needs include further study linking maternal VA intakes on maternal and child VA status, and further associations with outcomes to determine intake requirements to optimize health.
Collapse
Affiliation(s)
- Bryan M Gannon
- Division of Nutritional Sciences, and Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| | - Camille Jones
- Division of Nutritional Sciences, and Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, and Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Sijilmassi O, López-Alonso JM, Del Río Sevilla A, Murillo González J, Barrio Asensio MDC. Biometric Alterations of Mouse Embryonic Eye Structures Due to Short-Term Folic Acid Deficiency. Curr Eye Res 2018; 44:428-435. [PMID: 30403890 DOI: 10.1080/02713683.2018.1545911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Folic acid (FA) is an essential nutrient for normal embryonic development. FA deficiency (FAD) in maternal diet increases the risk of several defects among the progeny, especially, neural tube defects. The eye begins its development from the neural tube; however, the relationship between FAD and ocular development in the offspring has been little explored and it isn't known how the FAD affects the formation of the eye. Our objective was to analyze the effect of maternal FAD on mouse embryos ocular biometry. METHODS Female mice C57/BL/6J were distributed into three different groups, according to the assigned diet: control group fed a standard FA diet (2 mg FA/kg), FAD group for short term fed (0 mg FA/kg + 1% succinylsulfathiazole) from the day after mating until day 14.5 of gestation, and FAD group for long term fed the same FA-deficient diet for 6 weeks prior mating and continued with this diet during gestation. A total of 57 embryos (19 embryos of each dietary group) at 14.5 gestational days were evaluated. As indicators of changes in ocular biometry, we analyze two parameters: area and circularity of the lens and whole eye, and the area of the retina. The program used in the treatment and selection of the areas of interest was ImageJ. The statistical analysis was performed by IBM SPSS Statistics 19. RESULTS Regarding the measures of the area, FA-deficient lenses and eyes were smaller than that of controls. We have also observed increase in the size of the neural retina, spatially, in embryos from females fed FAD diet during long term. On the other hand, as regard to circularity measures, we have seen that eyes and lenses were more circular than control. CONCLUSION Maternal FAD diet for a very short term generates morphological changes in ocular structures to the offspring.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain.,b Faculty of Optics and Optometry, Optics Department , Universidad Complutense De Madrid , Madrid , Spain
| | - José Manuel López-Alonso
- b Faculty of Optics and Optometry, Optics Department , Universidad Complutense De Madrid , Madrid , Spain
| | - Aurora Del Río Sevilla
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| | - Jorge Murillo González
- c Faculty of medicine, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| | - María Del Carmen Barrio Asensio
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| |
Collapse
|
9
|
Chambers TM, Agopian AJ, Lewis RA, Langlois PH, Danysh HE, Weber KA, Shaw GM, Mitchell LE, Lupo PJ. Epidemiology of anophthalmia and microphthalmia: Prevalence and patterns in Texas, 1999-2009. Am J Med Genet A 2018; 176:1810-1818. [PMID: 30070760 DOI: 10.1002/ajmg.a.40352] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023]
Abstract
Anophthalmia and microphthalmia are a set of rare, yet severe, birth defects considered to be part of a spectrum of developmental ocular malformations ranging from smaller than average to completely absent eyes. Despite their clinical significance, little is known about the etiologies of these conditions. The goal of this study was to expand our understanding of the epidemiology of anophthalmia and microphthalmia. Data for this population-based assessment were obtained from the Texas Birth Defects Registry (TBDR) and Center for Health Statistics for the period 1999-2009. Descriptive analyses and estimates of birth prevalence and prevalence ratios (PR) were determined for this defect. There were 1,262 definite anophthalmia and microphthalmia patients identified in the TBDR, with an overall combined prevalence of 3.0 per 10,000 live births. More than half (55.7%) of the patients had at least one chromosome abnormality or syndrome. In addition, 92.4% of nonsyndromic patients (i.e., have no recorded chromosome abnormalities or syndromes) had at least one additional birth defect. After adjustment for multiple factors, the prevalence of nonsyndromic anophthalmia and microphthalmia was higher among mothers who had ≥2 previous fetal deaths (PR = 1.43, 95% confidence interval [CI]: 1.03-1.97) and among mothers with any reported diabetes (PR = 2.08, 95% CI: 1.49-2.90). Our results confirm that children with anophthalmia and microphthalmia frequently have genetic syndromes or are born with other major birth defects. Our findings add to the limited body of literature on anophthalmia and microphthalmia as well as help define subgroups of women who are more likely to have children with this malformation.
Collapse
Affiliation(s)
- Tiffany M Chambers
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - A J Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, Human Genetics Center, University of Texas School of Public Health, Houston, Texas
| | - Richard A Lewis
- Departments of Molecular & Human Genetics and Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - Peter H Langlois
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, Texas
| | - Heather E Danysh
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kari A Weber
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, Human Genetics Center, University of Texas School of Public Health, Houston, Texas
| | - Philip J Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Weber KA, Yang W, Carmichael SL, Shaw GM. Nutrient intake in women before conception and risks of anophthalmia and microphthalmia in their offspring. Birth Defects Res 2018; 110:863-870. [PMID: 29504274 DOI: 10.1002/bdr2.1201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/21/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND We previously explored associations between nutrients including folate and other macro and micronutrients and risks of anophthalmia or microphthalmia in the National Birth Defects Prevention Study. In the current study, we expand those previous results with larger sample sizes and conduct analyses with an additional diet quality index using more recent data. METHODS The National Birth Defects Prevention Study is a population-based, multicenter case-control study of over 30 major birth defects, with estimated due dates from October 1997 to December 2011. Cases were 224 infants diagnosed with anophthalmia or microphthalmia. Controls were 11,109 live-born, nonmalformed infants randomly selected by each study center. Mothers completed a standardized, computer-assisted telephone interview between 6 weeks and 24 months after delivery. Mothers responded to a shortened food frequency questionnaire, assessing their nutrient intake for the year before pregnancy, and questions about periconceptional (2 months before to 2 months after conception) vitamin supplement use. Nutrient intake quartiles were based on the intake among controls. RESULTS Among vitamin supplement users, odds of anophthalmia/microphthalmia were decreased for women with intake levels in the highest quartile of folate (0.56, 95% confidence interval [CI] 0.32-0.98), magnesium (0.42, 95% CI 0.22-0.82), and vitamin E (0.50, 95% CI 0.29-0.89). Among women not reporting vitamin supplement use, the odds were significantly increased for beta-carotene (2.5, 95% CI 1.10-5.68) and decreased for retinol (0.37, 95% CI 0.19-0.73). CONCLUSIONS In this expanded analysis, we observed associations for a few nutrients, specifically forms of vitamin A. However, the heterogeneity of results by form and vitamin use necessitates further inquiry.
Collapse
Affiliation(s)
- Kari A Weber
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Wei Yang
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Suzan L Carmichael
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
11
|
Maestro-de-las-Casas C, Pérez-Miguelsanz J, López-Gordillo Y, Maldonado E, Partearroyo T, Varela-Moreiras G, Martínez-Álvarez C. Maternal folic acid-deficient diet causes congenital malformations in the mouse eye. ACTA ACUST UNITED AC 2014; 97:587-96. [PMID: 24078476 DOI: 10.1002/bdra.23176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/13/2013] [Accepted: 07/29/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND The eye is a very complex structure derived from the neural tube, surface ectoderm, and migratory mesenchyme from a neural crest origin. Because structures that evolve from the neural tube may be affected by a folate/folic acid (FA) deficiency, the aim of this work was to investigate whether a maternal folic acid-deficient diet may cause developmental alterations in the mouse eye. METHODS Female C57BL/6J mice (8 weeks old) were assigned into two different folic acid groups for periods ranging between 2 and 16 weeks. Animals were killed at gestation day 17. Hepatic folate was analyzed, and the eyes from 287 fetuses were macroscopically studied, sectioned and immunolabeled with anti-transforming growth factor (TGF)-β2 and anti-TGF-βRII. RESULTS Mice exposed to a FA-deficient diet exhibited numerous eye macroscopic anomalies, such as anophthalmia and microphthalmia. Microscopically, the eye was the most affected organ (43.7% of the fetuses). The highest incidence of malformations occurred from the 8th week onward. A statistically significant linear association between the number of maternal weeks on the FA-deficient diet and embryonic microscopic eye malformations was observed. The optic cup derivatives and structures forming the eye anterior segment showed severe abnormalities. In addition, TGF-β2 and TGF-βRII expression in the eye was also altered. CONCLUSION This study suggests that an adequate folic acid/folate status plays a key role in the formation of ocular tissues and structures, whereas a vitamin deficiency is negatively associated with a normal eye development even after a short-term exposure.
Collapse
Affiliation(s)
- Carmen Maestro-de-las-Casas
- Departamento de Anatomía y Embriología Humana I. Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Carmichael SL, Rasmussen SA, Shaw GM. Prepregnancy obesity: A complex risk factor for selected birth defects. ACTA ACUST UNITED AC 2010; 88:804-10. [DOI: 10.1002/bdra.20679] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Kivell TL, Doyle SK, Madden RH, Mitchell TL, Sims EL. An interactive method for teaching anatomy of the human eye for medical students in ophthalmology clinical rotations. ANATOMICAL SCIENCES EDUCATION 2009; 2:173-178. [PMID: 19637292 DOI: 10.1002/ase.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Much research has shown the benefits of additional anatomical learning and dissection beyond the first year of medical school human gross anatomy, all the way through postgraduate medical training. We have developed an interactive method for teaching eye and orbit anatomy to medical students in their ophthalmology rotation at Duke University School of Medicine. We provide review lectures on the detailed anatomy of the adult human eye and orbit as well as the developmental anatomy of the eye. These lectures are followed by a demonstration of the anatomy of the orbit using conventional frontal and superior exposures on a prosected human cadaver. The anatomy is projected onto a large LCD screen using a mounted overhead camera. Following a brief lecture on clinically relevant anatomy, each student then dissects a fresh porcine (pig) eye under low magnification using a dissecting microscope. These dissections serve to identify structures extrinsic to the eyeball, including extraocular muscle attachments, small vessels, optic nerve stalk, and fascial sheath of the eyeball (Tenon's fascia). Dissection then shifts to the internal anatomy of the eyeball. The size and anatomy of the porcine eye is comparable with that of the human and the dissection provides students with a valuable hands-on learning opportunity that is otherwise not available in embalmed human cadavers. Students and clinical faculty feedback reveal high levels of satisfaction with the presentation of anatomy and its scheduling early during the ophthalmology clerkship.
Collapse
Affiliation(s)
- Tracy L Kivell
- Department of Evolutionary Anthropology, Duke University School of Medicine, Duke University, Durham, North Carolina 27708-0383, USA.
| | | | | | | | | |
Collapse
|