1
|
Miao M, Lu S, Sun X, Zhao M, Wang J, Su X, Jin B, Sun L. Identification of a novel heterozygous missense TP63 variant in a Chinese pedigree with split-hand/foot malformation. BMC Med Genomics 2022; 15:157. [PMID: 35831859 PMCID: PMC9281006 DOI: 10.1186/s12920-022-01311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor protein p63 is an important transcription factor regulating epithelial morphogenesis. Variants associated with the TP63 gene are known to cause multiple disorders. In this study, we determined the genetic cause of split-hand/foot malformation in a Chinese pedigree. METHODS For this study, we have recruited a Chinese family and collected samples from affected and normal individuals of the family (three affected and two normal). Whole exome sequencing was performed to detect the underlying genetic defect in this family. The potential variant was validated using the Sanger sequencing approach. RESULTS Using whole-exome and Sanger sequencing, we identified a novel heterozygous pathogenic missense variant in TP63 (NM_003722.5: c.921G > T; p.Met307Ile). This variant resulted in the substitution of methionine with isoleucine. Structural analysis suggested a resulting change in the structure of a key functional domain of the p63 protein. CONCLUSION This novel missense variant expands the TP63 variant spectrum and provides a basis for genetic counseling and prenatal diagnosis of families with split-hand/foot malformation or other TP63-related diseases.
Collapse
Affiliation(s)
- Mingzhu Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shoulian Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiao Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Meng Zhao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jue Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiaotan Su
- Department of Bioinformatics, Berry Genomics Co., Ltd., Beijing, China
| | - Bai Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
2
|
Zhu M, Wang Y, Guan L, Lu C, Sun R, Chen Y, Shi J, Zhu Y, Wang D. A novel chromosome 2q24.3-q32.1 microdeletion in a fetus with multiple malformations. J Clin Lab Anal 2022; 36:e24602. [PMID: 35819063 PMCID: PMC9396185 DOI: 10.1002/jcla.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Terminal or interstitial deletion of chromosome 2q is rarely reported but clinically significant, which can result in developmental malformations and psychomotor retardation in humans. In the present study, we analyzed this deletion to comprehensively clarify the relationship between phenotype and microdeletion region. METHODS We collected clinical records of the fetus and summarized patient symptoms. Subsequently, genomic DNA was extracted from fetal tissue or peripheral blood collected from parents. In addition, whole-exome sequencing (WES) and copy number variation sequencing (CNV-seq) were performed. RESULTS The fetus presented a previously unreported interstitial deletion of 2q24.3-q32.1. WES and CNV-seq revealed a de novo 18.46 Mb deletion at 2q24.3-q32.1, a region involving 94 protein-coding genes, including HOXD13, MAP3K20, DLX1, DLX2, SCN2A, and SCN1A. The fetus had upper and lower limb malformations, including camptodactyly and syndactyly, along with congenital cardiac defects. CONCLUSION Herein, we report a fetus with a novel microdeletion of chromosome 2q24.3-q32.1, likely a heterozygous pathogenic variant. Haploinsufficiency of HOXD13 might be related to limb deformity in the fetus.
Collapse
Affiliation(s)
- Mianmian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijie Guan
- Department of Ultrasound imaging, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Chen
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiamin Shi
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanying Zhu
- Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Bilal M, Hayat A, Umair M, Ullah A, Khawaja S, Malik E, Burmeister M, Bibi N, Umm-E-Kalsoom, Memon MI, Basit S, Ahmad W, Khan B. Sequence Variants in the WNT10B and TP63 Genes Underlying Isolated Split-Hand/Split-Foot Malformation. Genet Test Mol Biomarkers 2020; 24:600-607. [PMID: 32762550 DOI: 10.1089/gtmb.2020.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims: Split-hand/split-foot malformation (SHFM) is a developmental and congenital limb malformation characterized by variable degrees of medial clefting or absence of one or more digits in hands and/or feet. The aim of this study was to identify the underlying cause of three consanguineous Pakistani families showing various types of SHFM-related features. Materials and Methods: Standard molecular methods, including whole-genome sequencing (WGS), whole-exome sequencing (WES), microsatellite markers-based genotyping, and Sanger sequencing were performed to search for the likely causative variants. Results: In family A, WES revealed a novel homozygous missense variant [c.338G>A, p.(Gly113Asp)] in the WNT10B gene. In family B, microsatellite-based genotyping followed by Sanger sequencing revealed a novel homozygous 13 base pairs deletion [c.884-896delTCCAGCCCCGTCT, p.(Phe295Cysfs*87)] in the same gene. In family C, WGS divulged a previously reported heterozygous missense variant [c.956G>A, p.(Arg319His)] in the TP63 gene. Conclusions: Mapping and sequencing genes and variants for severe skeletal disorders, such as SHRM, will facilitate establishing specific genotype-phenotype correlations and providing genetic counseling for the families suffering from such conditions.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Hayat
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sundus Khawaja
- Department of Biotechnology, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Erum Malik
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Pakistan
| | - Margit Burmeister
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Umm-E-Kalsoom
- Department of Biochemistry, Hazara University Mansehra, Mansehra, Pakistan
| | - Muhammad Iqbal Memon
- Department of Anesthesia and Critical Care, PIMS, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Khan
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
4
|
Khan A, Wang R, Han S, Umair M, Alshabeeb MA, Ansar M, Ahmad W, Alaamery M, Zhang X. A Novel Homozygous Nonsense Mutation p.Cys366* in the WNT10B Gene Underlying Split-Hand/Split Foot Malformation in a Consanguineous Pakistani Family. Front Pediatr 2020; 7:526. [PMID: 31998667 PMCID: PMC6970189 DOI: 10.3389/fped.2019.00526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023] Open
Abstract
Split hand/split foot malformation (SHFM) or ectrodactyly is characterized by a deep median cleft of the hand or foot, hypoplasia or aplasia of the metacarpals, metatarsals, and phalanges. It is a clinically and genetically heterogeneous group of limb malformations. This study aimed to identify the pathogenic variant in a consanguineous Pakistani family with autosomal recessive SHFM. Peripheral blood samples were obtained, DNA was extracted, WNT10B coding and noncoding regions were PCR amplified and Sanger sequencing was performed using workflow suggested by Thermo Fisher Scientific. A novel homozygous nonsense variant (c.1098C>A; p.Cys366*) was identified in the WNT10B gene in the index patients, which probably explains SHFM type 6 in this family in comparison with similar data from the literature.
Collapse
Affiliation(s)
- Amjad Khan
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shirui Han
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Science, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Mohammad A. Alshabeeb
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Umair M, Ullah A, Abbas S, Ahmad F, Basit S, Ahmad W. First direct evidence of involvement of a homozygous loss-of-function variant in the EPS15L1
gene underlying split-hand/split-foot malformation. Clin Genet 2018; 93:699-702. [DOI: 10.1111/cge.13152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022]
Affiliation(s)
- M. Umair
- Department of Biochemistry, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - A. Ullah
- Department of Biochemistry, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - S. Abbas
- Department of Biochemistry, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - F. Ahmad
- Department of Biochemistry, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - S. Basit
- Center for Genetics and Inherited Diseases; Taibah University; Al Madinah Saudi Arabia
| | - W. Ahmad
- Department of Biochemistry, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| |
Collapse
|
6
|
Ullah A, Gul A, Umair M, Irfanullah, Ahmad F, Aziz A, Wali A, Ahmad W. Homozygous sequence variants in the WNT10B gene underlie split hand/foot malformation. Genet Mol Biol 2018; 41:1-8. [PMID: 29384555 PMCID: PMC5901503 DOI: 10.1590/1678-4685-gmb-2016-0162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/10/2017] [Indexed: 11/22/2022] Open
Abstract
Split-hand/split-foot malformation (SHFM), also known as ectrodactyly is a rare genetic disorder. It is a clinically and genetically heterogeneous group of limb malformations characterized by absence/hypoplasia and/or median cleft of hands and/or feet. To date, seven genes underlying SHFM have been identified. This study described four consanguineous families (A-D) segregating SHFM in an autosomal recessive manner. Linkage in the families was established to chromosome 12p11.1-q13.13 harboring WNT10B gene. Sequence analysis identified a novel homozygous nonsense variant (p.Gln154*) in exon 4 of the WNT10B gene in two families (A and B). In the other two families (C and D), a previously reported variant (c.300_306dupAGGGCGG; p.Leu103Argfs*53) was detected. This study further expands the spectrum of the sequence variants reported in the WNT10B gene, which result in the split hand/foot malformation.
Collapse
Affiliation(s)
- Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ajab Gul
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | - Muhammad Umair
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Irfanullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farooq Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Aziz
- Department of Computer Sciences and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Abdul Wali
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
7
|
Schille C, Schambony A. Signaling pathways and tissue interactions in neural plate border formation. NEUROGENESIS 2017; 4:e1292783. [PMID: 28352644 DOI: 10.1080/23262133.2017.1292783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 02/04/2023]
Abstract
The neural crest is a transient cell population that gives rise to various cell types of multiple tissues and organs in the vertebrate embryo. Neural crest cells arise from the neural plate border, a region localized at the lateral borders of the prospective neural plate. Temporally and spatially coordinated interaction with the adjacent tissues, the non-neural ectoderm, the neural plate and the prospective dorsolateral mesoderm, is required for neural plate border specification. Signaling molecules, namely BMP, Wnt and FGF ligands and corresponding antagonists are derived from these tissues and interact to induce the expression of neural plate border specific genes. The present mini-review focuses on the current understanding of how the NPB territory is formed and accentuates the need for coordinated interaction of BMP and Wnt signaling pathways and precise tissue communication that are required for the definition of the prospective NC in the competent ectoderm.
Collapse
Affiliation(s)
- Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg , Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg , Erlangen, Germany
| |
Collapse
|
8
|
Sivasankaran A, Srikanth A, Kulshreshtha PS, Anuradha D, Kadandale JS, Samuel CR. Split Hand/Foot Malformation Associated with 7q21.3 Microdeletion: A Case Report. Mol Syndromol 2016; 6:287-96. [PMID: 27022330 DOI: 10.1159/000443708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 11/19/2022] Open
Abstract
Split hand/foot malformation (SHFM) or ectrodactyly is a rare genetic condition affecting limb development. SHFM shows clinical and genetic heterogeneity. It can present as an isolated form or in combination with additional anomalies affecting the long bones (nonsyndromic form) or other organ systems including the craniofacial, genitourinary and ectodermal structures (syndromic ectrodactyly). This study reports a girl with SHFM who also exhibited developmental delay, mild dysmorphic facial features and sensorineural hearing loss. High-resolution banding analysis indicated an interstitial deletion within the 7q21 band. FISH using locus-specific BAC probes confirmed the microdeletion of 7q21.3. Chromosomal microarray analysis also revealed a microdeletion of 1.856 Mb in 7q21.3. However, a larger 8.44-Mb deletion involving bands 7q21.11q21.2 was observed, and the breakpoints were refined. The phenotype and the candidate genes underlying the pathogenesis of this disorder are discussed.
Collapse
Affiliation(s)
- Aswini Sivasankaran
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, India
| | - Ambika Srikanth
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Pooja S Kulshreshtha
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Deenadayalu Anuradha
- Department of Medical Genetics, Institute of Obstetrics and Gynecology, Government Hospital for Women and Children, Madras Medical College, Chennai, India
| | - Jayarama S Kadandale
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Chandra R Samuel
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, India
| |
Collapse
|
9
|
Lu J, Vaidya N, Meng H, Dai Q, Romine LE, Jones MC, Pretorius DH. Prenatally diagnosed fetal split-hand/foot malformations often accompany a spectrum of anomalies. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:167-176. [PMID: 24371113 DOI: 10.7863/ultra.33.1.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of this series was to identify cases that appeared on sonography to be split-hand/foot malformations (SHFMs) in fetuses and correlate the sonographic findings, including 2-dimensional (2D) and 3-dimensional (3D) sonography, to outcomes. A retrospective review was conducted of sonographic studies from 2002 to 2012 at 2 fetal care centers. Data were collected with respect to the morphologic characteristics of split-hand/foot abnormalities, the utility of 3D sonography, associated anatomic abnormalities, family histories, gestational ages at diagnosis, fetal outcomes, karyotype, and autopsy results. Ten cases were identified with gestational ages ranging from 15 to 29 weeks. Three-dimensional sonography was helpful in defining anatomy in 7 of 9 cases in which it was performed. Bilateral SHFMs were found in 7 cases (3 cases involving both hands and feet, 2 cases isolated to hands, and 2 cases isolated to feet), whereas 3 cases showed unilateral split-hand malformations. Associated anatomic anomalies were present in 6 cases, and 4 of these had recognized syndromes, including 2 with abnormal karyotypes, specifically, del(22q11) and del(7q31). Two cases occurred in the context of a positive family history of SHFM. Three cases were delivered at term, and 7 cases were electively terminated. In conclusion, SHFMs often occur with a broad range of chromosomal abnormalities, single-gene disorders, and other congenital anomalies. Some apparent SHFMs turn out to be other limb anomalies, such as complex syndactyly. Prenatal screening using 2D sonography can identify SHFMs, and 3D sonography often further clarifies them.
Collapse
Affiliation(s)
- Jia Lu
- Thornton Hospital, 9300 Campus Point Dr, 7756, La Jolla, CA 92037 USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Aziz A, Irfanullah, Khan S, Zimri FK, Muhammad N, Rashid S, Ahmad W. Novel homozygous mutations in the WNT10B gene underlying autosomal recessive split hand/foot malformation in three consanguineous families. Gene 2013; 534:265-71. [PMID: 24211389 DOI: 10.1016/j.gene.2013.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/22/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Split-hand/split-foot malformation (SHFM), representing variable degree of median clefts of hands and feet, is a genetically heterogeneous group of limb malformations with seven loci mapped on different human chromosomes. However, only 3 genes (TP63, WNT10B, DLX5) for the seven loci have been identified. The study, presented here, described three consanguineous Pakistani families segregating SHFM in autosomal recessive manner. Linkage in the families was searched by genotyping microsatellite markers and mutation screening of candidate gene was performed by Sanger DNA sequencing. Clinical features of affected members of these families exhibited SHFM phenotype with involvement of hands and feet. Genotyping using microsatellite markers mapped the families to WNT10B gene at SHFM6 on chromosome 12q13.11-q13. Subsequently, sequence analysis of WNT10B gene revealed a novel 4-bp deletion mutation (c.1165_1168delAAGT) in one family and 7-bp duplication (c.300_306dupAGGGCGG) in two other families. Structure-based analysis showed a significant conformational shift in the active binding site of mutated WNT10B (p.Lys388Glufs*36), influencing binding with Fzd8. The mutations identified in the WNT10B gene extend the body of evidence implicating it in the pathogenesis of SHFM.
Collapse
Affiliation(s)
- Abdul Aziz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Irfanullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Saadullah Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | | | - Noor Muhammad
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, KPK, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
| |
Collapse
|
11
|
Khan S, Basit S, Zimri FK, Ali N, Ali G, Ansar M, Ahmad W. A novel homozygous missense mutation in WNT10B in familial split-hand/foot malformation. Clin Genet 2011; 82:48-55. [PMID: 21554266 DOI: 10.1111/j.1399-0004.2011.01698.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Split-hand/foot malformation (SHFM) is a rare limb developmental malformation, characterized by variable degree of median clefts of hands and feet due to the absence of central rays of extremities. To date, six different forms of SHFM have been described. Four of these SHFM1, SHFM3, SHFM4 and SHFM5 show autosomal dominant, SHFM6 autosomal recessive and SHFM2 X-linked pattern of inheritance. In this study a large consanguineous Pakistani family, with autosomal recessive SHFM, appeared in the last two generations, was investigated. In total 15 individuals including 9 males and 6 females were affected with the syndrome. Affected members of the family exhibited SHFM phenotype with involvement of hands and feet. Most of the affected members showed syndactyly/polydactyly in hands and feet, dysplastic hand, aplasia of radial ray of hand and cleft foot. Investigating linkage to known autosomal SHFM loci mapped the family to SHFM6 locus on chromosome 12p11.1-q13.13. Mutation screening of the gene WNT10B revealed a novel sequence variant (c.986C>G, p.Thr329Arg) in all affected individuals who were studied. This is the third mutation reported in gene WNT10B causing autosomal recessive SHFM syndrome.
Collapse
Affiliation(s)
- S Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan National Institute of Rehabilitation Medicine, Islamabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
12
|
D'Amours G, Kibar Z, Mathonnet G, Fetni R, Tihy F, Désilets V, Nizard S, Michaud JL, Lemyre E. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin Genet 2011; 81:128-41. [PMID: 21496010 DOI: 10.1111/j.1399-0004.2011.01687.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite a wide range of clinical tools, the etiology of mental retardation and multiple congenital malformations remains unknown for many patients. Array-based comparative genomic hybridization (aCGH) has proven to be a valuable tool in these cases, as its pangenomic coverage allows the identification of chromosomal aberrations that are undetectable by other genetic methods targeting specific genomic regions. Therefore, aCGH is increasingly used in clinical genetics, both in the postnatal and the prenatal settings. While the diagnostic yield in the postnatal population has been established at 10-12%, studies investigating fetuses have reported variable results. We used whole-genome aCGH to investigate fetuses presenting at least one major malformation detected on ultrasound, but for whom standard genetic analyses (including karyotype) failed to provide a diagnosis. We identified a clinically significant chromosomal aberration in 8.2% of tested fetuses (4/49), and a result of unclear clinical significance in 12.2% of tested fetuses (6/49). Our results document the value of whole-genome aCGH as a prenatal diagnostic tool and highlight the interpretation difficulties associated with copy number variations of unclear significance.
Collapse
Affiliation(s)
- G D'Amours
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Drozdov I, Tsoka S, Ouzounis CA, Shah AM. Genome-wide expression patterns in physiological cardiac hypertrophy. BMC Genomics 2010; 11:557. [PMID: 20937113 PMCID: PMC3091706 DOI: 10.1186/1471-2164-11-557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 10/11/2010] [Indexed: 01/28/2023] Open
Abstract
Background Genome-wide expression patterns in physiological cardiac hypertrophy. Co-expression patterns in physiological cardiac hypertrophy Results In this study, the first large-scale analysis of publicly available genome-wide expression data of several in vivo murine models of physiological LVH was carried out using network analysis. On evaluating 3 million gene co-expression patterns across 141 relevant microarray experiments, it was found that physiological adaptation is an evolutionarily conserved processes involving preservation of the function of cytochrome c oxidase, induction of autophagy compatible with cell survival, and coordinated regulation of angiogenesis. Conclusion This analysis not only identifies known biological pathways involved in physiological LVH, but also offers novel insights into the molecular basis of this phenotype by identifying key networks of co-expressed genes, as well as their topological and functional properties, using relevant high-quality microarray experiments and network inference.
Collapse
Affiliation(s)
- Ignat Drozdov
- King's College London (KCL) BHF Centre of Research Excellence - Cardiovascular Division - School of Medicine - James Black Centre - 125 Coldharbour Lane, London, UK
| | | | | | | |
Collapse
|