1
|
Chen Z, Li S, Guo L, Peng X, Liu Y. Prenatal alcohol exposure induced congenital heart diseases: From bench to bedside. Birth Defects Res 2020; 113:521-534. [PMID: 32578335 DOI: 10.1002/bdr2.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Alcohol consumption is increasing worldwide. Many child-bearing-aged women consume alcohol during pregnancy, intentionally or unintentionally, thereby increasing the potential risk for severe congenital diseases. Congenital heart disease (CHD) is the most common birth defect worldwide and can result from both hereditary and acquired factors. Prenatal alcohol exposure (PAE) is considered a key factor that leads to teratogenesis in CHD and its specific phenotypes, especially defects of the cardiac septa, cardiac valves, cardiac canals, and great arteries, adjacent to the chambers, both in animal experiments and clinical retrospective studies. The mechanisms underlying CHD and its phenotypes caused by PAE are associated with changes in retinoic acid biosynthesis and its signaling pathway, apoptosis and defective function of cardiac neural crest cells, disturbance of the Wntβ-catenin signaling pathway, suppression of bone morphogenetic protein (BMP) signaling, and other epigenetic mechanisms. Drug supplements and early diagnosis can help prevent PAE from inducing CHDs.
Collapse
Affiliation(s)
- Zhiyan Chen
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Sheng Li
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Linghong Guo
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China
| | - Xu Peng
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China
| | - Yin Liu
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China.,Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
3
|
Zhang Y, Kang Y, Zhou Q, Zhou J, Wang H, Jin H, Liu X, Ma D, Li X. Quantitative proteomic analysis of serum from pregnant women carrying a fetus with conotruncal heart defect using isobaric tags for relative and absolute quantitation (iTRAQ) labeling. PLoS One 2014; 9:e111645. [PMID: 25393621 PMCID: PMC4230941 DOI: 10.1371/journal.pone.0111645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
Abstract
Objective To identify differentially expressed proteins from serum of pregnant women carrying a conotruncal heart defects (CTD) fetus, using proteomic analysis. Methods The study was conducted using a nested case-control design. The 5473 maternal serum samples were collected at 14–18 weeks of gestation. The serum from 9 pregnant women carrying a CTD fetus, 10 with another CHD (ACHD) fetus, and 11 with a normal fetus were selected from the above samples, and analyzed by using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry(2D LC-MS/MS). The differentially expressed proteins identified by iTRAQ were further validated with Western blot. Results A total of 105 unique proteins present in the three groups were identified, and relative expression data were obtained for 92 of them with high confidence by employing the iTRAQ-based experiments. The downregulation of gelsolin in maternal serum of fetus with CTD was further verified by Western blot. Conclusions The identification of differentially expressed protein gelsolin in the serum of the pregnant women carrying a CTD fetus by using proteomic technology may be able to serve as a foundation to further explore the biomarker for detection of CTD fetus from the maternal serum.
Collapse
Affiliation(s)
- Ying Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yuan Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jizi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijun Wang
- Children's Hospital, Fudan University, Shanghai, China
| | - Hong Jin
- Department of Chemistry, Fudan University, Shanghai, China
- Institute of Biomedicine, Fudan University, Shanghai, China
| | - Xiaohui Liu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XL); (DM)
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- * E-mail: (XL); (DM)
| |
Collapse
|