1
|
Tsukiboshi Y, Noguchi A, Horita H, Mikami Y, Yokota S, Ogata K, Yoshioka H. Let-7c-5p associate with inhibition of phenobarbital-induced cell proliferation in human palate cells. Biochem Biophys Res Commun 2024; 696:149516. [PMID: 38241808 DOI: 10.1016/j.bbrc.2024.149516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Cleft palate (CP) is one of the most common congenital diseases, and is accompanied by a complicated etiology. Medical exposure in women is among one of the reasons leading to CP. Recently, it has been reported that microRNA (miRNA) plays a crucial role in palate formation and the disruption of miRNA that influence the development of CP. Although association with pharmaceuticals and miRNAs were suggested, it has remained largely unknow. The aim of the current investigation is to elucidate upon the miRNA associated with the inhibition of phenobarbital (PB)-induced cell proliferation in human embryonic palatal mesenchymal (HEPM) cells. We showed that PB inhibited HEPM cell viability in a dose-dependent manner. We demonstrated that PB treatment suppressed cyclin-D1 expression in HEPM cells. Furthermore, PB upregulated let-7c-5p expression and downregulated the expression of two downstream genes (BACH1 and PAX3). Finally, we demonstrated that the let-7c-5p inhibitor alleviated PB-induced inhibition of cell proliferation and altered BACH1 and PAX3 expression levels. These results suggest that PB suppresses cell viability by modulating let-7c-5p expression.
Collapse
Affiliation(s)
- Yosuke Tsukiboshi
- Department of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293, Japan
| | - Azumi Noguchi
- Department Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Hanane Horita
- Department of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293, Japan
| | - Yurie Mikami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293, Japan.
| |
Collapse
|
2
|
Avasthi KK, Muthuswamy S, Asim A, Agarwal A, Agarwal S. Identification of Novel Genomic Variations in Susceptibility to Nonsyndromic Cleft Lip and Palate Patients. Pediatr Rep 2021; 13:650-657. [PMID: 34941638 PMCID: PMC8703930 DOI: 10.3390/pediatric13040077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nonsyndromic cleft lip with or without palate (NSCL/P) is a multifactorial and common birth malformation caused by genetic and environmental factors, as well as by teratogens. Genome-wide association studies found genetic variations with modulatory effects of NSCL/P formation in Chinese and Iranian populations. We aimed to identify the susceptibility of single-nucleotide polymorphisms (SNPs) to nonsyndromic cleft lip with or without palate in the Indian population. MATERIAL AND METHODS The present study was conducted on NSCL/P cases and controls. Genomic DNA was extracted from peripheral blood and Axiom- Precision Medicine Research Array (PMRA) was performed. The Axiom-PMRA covers 902,527 markers and several thousand novel risk variants. Quality control-passed samples were included for candidate genetic variation identification, gene functional enrichment, and pathway and network analysis. RESULTS The genome-wide association study identified fourteen novel candidate gene SNPs that showed the most significant association with the risk of NSCL/P, and eight were predicted to have regulatory sequences. CONCLUSION The GWAS study showed novel candidate genetic variations in NSCL/P formations. These findings contribute to the understanding of genetic predisposition to nonsyndromic cleft lip with or without palate.
Collapse
Affiliation(s)
- Kapil Kumar Avasthi
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, India; (K.K.A.); (A.A.)
| | - Srinivasan Muthuswamy
- Department of Life Sciences, National Institute of Technology, Rourkela 769001, Odisha, India;
| | - Ambreen Asim
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, India; (K.K.A.); (A.A.)
| | - Amit Agarwal
- Department of Burn and Plastic Surgery, Vivekananda Polyclinic and Institute of Medical Sciences, Lucknow 226007, India;
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, India; (K.K.A.); (A.A.)
- Correspondence: ; Tel.: +91-0522-2494356
| |
Collapse
|
3
|
Denault WRP, Romanowska J, Haaland ØA, Lyle R, Taylor J, Xu Z, Lie RT, Gjessing HK, Jugessur A. Wavelet Screening identifies regions highly enriched for differentially methylated loci for orofacial clefts. NAR Genom Bioinform 2021; 3:lqab035. [PMID: 33987535 PMCID: PMC8092375 DOI: 10.1093/nargab/lqab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/04/2022] Open
Abstract
DNA methylation is the most widely studied epigenetic mark in humans and plays an essential role in normal biological processes as well as in disease development. More focus has recently been placed on understanding functional aspects of methylation, prompting the development of methods to investigate the relationship between heterogeneity in methylation patterns and disease risk. However, most of these methods are limited in that they use simplified models that may rely on arbitrarily chosen parameters, they can only detect differentially methylated regions (DMRs) one at a time, or they are computationally intensive. To address these shortcomings, we present a wavelet-based method called 'Wavelet Screening' (WS) that can perform an epigenome-wide association study (EWAS) of thousands of individuals on a single CPU in only a matter of hours. By detecting multiple DMRs located near each other, WS identifies more complex patterns that can differentiate between different methylation profiles. We performed an extensive set of simulations to demonstrate the robustness and high power of WS, before applying it to a previously published EWAS dataset of orofacial clefts (OFCs). WS identified 82 associated regions containing several known genes and loci for OFCs, while other findings are novel and warrant replication in other OFCs cohorts.
Collapse
Affiliation(s)
- William R P Denault
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450, Oslo, Norway
| | - Jack A Taylor
- Epidemiology Branch and Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIH/NIEHS), 27709, Durham, North Carolina, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIH/NIEHS), 27709, Durham, North Carolina, USA
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Astanand Jugessur
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| |
Collapse
|
4
|
Yamaguchi H, Kitami K, Wu X, He L, Wang J, Wang B, Komatsu Y. Alteration of DNA Damage Response Causes Cleft Palate. Front Physiol 2021; 12:649492. [PMID: 33854442 PMCID: PMC8039291 DOI: 10.3389/fphys.2021.649492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cleft palate is one of the most common craniofacial birth defects, however, little is known about how changes in the DNA damage response (DDR) cause cleft palate. To determine the role of DDR during palatogenesis, the DDR process was altered using a pharmacological intervention approach. A compromised DDR caused by a poly (ADP-ribose) polymerase (PARP) enzyme inhibitor resulted in cleft palate in wild-type mouse embryos, with increased DNA damage and apoptosis. In addition, a mouse genetic approach was employed to disrupt breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2), known as key players in DDR. An ectomesenchymal-specific deletion of Brca1 or Brca2 resulted in cleft palate due to attenuation of cell survival. This was supported by the phenotypes of the ectomesenchymal-specific Brca1/Brca2 double-knockout mice. The cleft palate phenotype was rescued by superimposing p53 null alleles, demonstrating that the BRCA1/2-p53 DDR pathway is critical for palatogenesis. Our study highlights the importance of DDR in palatogenesis.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Kohei Kitami
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Xiao Wu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Li He
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Jianbo Wang
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
5
|
Singh S, Kaur S, Gupta M, Seam RK, Khosla R, Changotra H. E2F1 gene variant rs2071054 is a risk factor for head and neck and cervical cancers: A pilot study. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Rodriguez N, Maili L, Chiquet BT, Blanton SH, Hecht JT, Letra A. BRCA1 and BRCA2 gene variants and nonsyndromic cleft lip/palate. Birth Defects Res 2018; 110:1043-1048. [PMID: 29921024 DOI: 10.1002/bdr2.1346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a debilitating condition that not only affects the individual, but the entire family. The purpose of this study was to investigate the association of BRCA1 and BRCA2 genes with NSCL/P. METHODS Twelve polymorphisms in/nearby BRCA1 and BRCA2 were genotyped using Taqman chemistry. Our data set consisted of 3,473 individuals including 2,191 nonHispanic white (NHW) individuals (from 151 multiplex and 348 simplex families) and 1,282 Hispanic individuals (from 92 multiplex and 216 simplex families). Data analysis was performed using Family-Based Association Test (FBAT), stratified by ethnicity and family history of NSCL/P. RESULTS Nominal associations were found between NSCL/P and BRCA1 in Hispanics and BRCA2 in NHW and Hispanics (p < .05). Significant haplotype associations were found between NSCL/P and both BRCA1 and BRCA2 (p ≤ .004). CONCLUSIONS Our results suggest a modest association between BRCA1 and BRCA2 and NSCL/P. Further studies in additional populations and functional studies are needed to elucidate the role of these genes in developmental processes and signaling pathways contributing to NSCL/P.
Collapse
Affiliation(s)
- Nicholas Rodriguez
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston TX, USA
| | - Lorena Maili
- Department of Pediatrics, UTHealth McGovern Medical School, Houston TX, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston TX, USA
| | - Brett T Chiquet
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston TX, USA.,Department of Pediatric Dentistry, UTHealth School of Dentistry at Houston, Houston TX, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston TX, USA
| | - Susan H Blanton
- Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami FL, USA
| | - Jacqueline T Hecht
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston TX, USA.,Department of Pediatrics, UTHealth McGovern Medical School, Houston TX, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston TX, USA
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston TX, USA.,Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston TX, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston TX, USA
| |
Collapse
|
7
|
Machado RA, Moreira HSB, de Aquino SN, Martelli-Junior H, de Almeida Reis SR, Persuhn DC, Wu T, Yuan Y, Coletta RD. Interactions between RAD51 rs1801321 and maternal cigarette smoking as risk factor for nonsyndromic cleft lip with or without cleft palate. Am J Med Genet A 2015; 170A:536-539. [PMID: 26507587 DOI: 10.1002/ajmg.a.37281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/05/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Renato Assis Machado
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Helenara Salvati Bertolossi Moreira
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil.,Department of Physiotherapy, State University of Western Paraná, Paraná, Brazil
| | - Sibele Nascimento de Aquino
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil.,Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Hercilio Martelli-Junior
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil.,Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of José Rosário Vellano, Minas Gerais, Brazil
| | | | - Darlene Camati Persuhn
- Molecular Biology Department, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Tao Wu
- Peking University School of Public Health, Beijing, China
| | - Yuan Yuan
- Peking University School of Public Health, Beijing, China
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|