1
|
Liu K, Xu X, Sun L, Li H, Jin Y, Ma X, Shen B, Martin C. Proteomics profiling reveals lipid metabolism abnormalities during oogenesis in unexplained recurrent pregnancy loss. Front Immunol 2024; 15:1397633. [PMID: 39176081 PMCID: PMC11339622 DOI: 10.3389/fimmu.2024.1397633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Background Unexplained recurrent pregnancy loss (URPL) is a clinical dilemma in reproductive fields. Its diagnosis is mainly exclusionary after extensive clinical examination, and some of the patients may still face the risk of miscarriage. Methods We analyzed follicular fluid (FF) from in vitro fertilization (IVF) in eight patients with URPL without endocrine abnormalities or verifiable causes of abortion and eight secondary infertility controls with no history of pregnancy loss who had experienced at least one normal pregnancy and delivery by direct data-independent acquisition (dDIA) quantitative proteomics to identify differentially expressed proteins (DEPs). In this study, bioinformatics analysis was performed using online software including g:profiler, String, and ToppGene. Cytoscape was used to construct the protein-protein interaction (PPI) network, and ELISA was used for validation. Results Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs are involved in the biological processes (BP) of complement and coagulation cascades. Apolipoproteins (APOs) are key proteins in the PPI network. ELISA confirmed that APOB was low-expressed in both the FF and peripheral blood of URPL patients. Conclusion Dysregulation of the immune network intersecting coagulation and inflammatory response is an essential feature of URPL, and this disequilibrium exists as early as the oogenesis stage. Therefore, earlier intervention is necessary to prevent the development of URPL. Moreover, aberrant lipoprotein regulation appears to be a key factor contributing to URPL. The mechanism by which these factors are involved in the complement and coagulation cascade pathways remains to be further investigated, which also provides new candidate targets for URPL treatment.
Collapse
Affiliation(s)
- Kun Liu
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Biochemistry and Molecular Biology Department of University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Xiaojuan Xu
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Sun
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongxing Li
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yi Jin
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Ma
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital Sichuan University, Chengdu, China
| | - Cesar Martin
- Biochemistry and Molecular Biology Department of University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Molecular Biophysics, Biofisika Institute (UPV/EHU, CSIC), Leioa, Spain
| |
Collapse
|
2
|
Roşca AE, Vlădăreanu AM, Mirica R, Anghel-Timaru CM, Mititelu A, Popescu BO, Căruntu C, Voiculescu SE, Gologan Ş, Onisâi M, Iordan I, Zăgrean L. Taurine and Its Derivatives: Analysis of the Inhibitory Effect on Platelet Function and Their Antithrombotic Potential. J Clin Med 2022; 11:jcm11030666. [PMID: 35160118 PMCID: PMC8837186 DOI: 10.3390/jcm11030666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Taurine is a semi-essential, the most abundant free amino acid in the human body, with a six times higher concentration in platelets than any other amino acid. It is highly beneficial for the organism, has many therapeutic actions, and is currently approved for heart failure treatment in Japan. Taurine has been repeatedly reported to elicit an inhibitory action on platelet activation and aggregation, sustained by in vivo, ex vivo, and in vitro animal and human studies. Taurine showed effectiveness in several pathologies involving thrombotic diathesis, such as diabetes, traumatic brain injury, acute ischemic stroke, and others. As human prospective studies on thrombosis outcome are very difficult to carry out, there is an obvious need to validate existing findings, and bring new compelling data about the mechanisms underlying taurine and derivatives antiplatelet action and their antithrombotic potential. Chloramine derivatives of taurine proved a higher stability and pronounced selectivity for platelet receptors, raising the assumption that they could represent future potential antithrombotic agents. Considering that taurine and its analogues display permissible side effects, along with the need of finding new, alternative antithrombotic drugs with minimal side effects and long-term action, the potential clinical relevance of this fascinating nutrient and its derivatives requires further consideration.
Collapse
Affiliation(s)
- Adrian Eugen Roşca
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Ana-Maria Vlădăreanu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Radu Mirica
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, “Sf. Ioan” Clinical Hospital, 042122 Bucharest, Romania;
| | - Cristina-Mihaela Anghel-Timaru
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Alina Mititelu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Bogdan Ovidiu Popescu
- Department of Neurology, “Carol Davila” University of Medicine and Pharmacy, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Constantin Căruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Şerban Gologan
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, Elias Clinical Hospital, 011461 Bucharest, Romania;
| | - Minodora Onisâi
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Iuliana Iordan
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Department of Medical Semiology and Nephrology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Leon Zăgrean
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| |
Collapse
|
3
|
Placental function in maternal obesity. Clin Sci (Lond) 2020; 134:961-984. [PMID: 32313958 DOI: 10.1042/cs20190266] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Maternal obesity is associated with pregnancy complications and increases the risk for the infant to develop obesity, diabetes and cardiovascular disease later in life. However, the mechanisms linking the maternal obesogenic environment to adverse short- and long-term outcomes remain poorly understood. As compared with pregnant women with normal BMI, women entering pregnancy obese have more pronounced insulin resistance, higher circulating plasma insulin, leptin, IGF-1, lipids and possibly proinflammatory cytokines and lower plasma adiponectin. Importantly, the changes in maternal levels of nutrients, growth factors and hormones in maternal obesity modulate placental function. For example, high insulin, leptin, IGF-1 and low adiponectin in obese pregnant women activate mTOR signaling in the placenta, promoting protein synthesis, mitochondrial function and nutrient transport. These changes are believed to increase fetal nutrient supply and contribute to fetal overgrowth and/or adiposity in offspring, which increases the risk to develop disease later in life. However, the majority of obese women give birth to normal weight infants and these pregnancies are also associated with activation of inflammatory signaling pathways, oxidative stress, decreased oxidative phosphorylation and lipid accumulation in the placenta. Recent bioinformatics approaches have expanded our understanding of how maternal obesity affects the placenta; however, the link between changes in placental function and adverse outcomes in obese women giving birth to normal sized infants is unclear. Interventions that specifically target placental function, such as activation of placental adiponectin receptors, may prevent the transmission of metabolic disease from obese women to the next generation.
Collapse
|
4
|
Abstract
The challenging nature of recurrent pregnancy loss (RPL) is multifactorial, but largely begins with determining who meets diagnostic criteria for RPL as definitions vary and frequently change. Many patients seek obstetrical intervention after losses, even if they do not meet the criteria for RPL, and even those strictly meeting criteria often present a conundrum as to the etiology of their condition. The contribution of hereditary thrombophilia to RPL, the impact of each disorder on the clotting cascade, available evidence regarding pregnancy outcomes, and current recommendations for evaluation and treatment is presented.
Collapse
|