1
|
Kirimlioglu E, Oflamaz AO, Hidisoglu E, Ozen S, Yargicoglu P, Demir N. Short and long-term 2100 MHz radiofrequency radiation causes endoplasmic reticulum stress in rat testis. Histochem Cell Biol 2024; 162:311-321. [PMID: 38997526 PMCID: PMC11364557 DOI: 10.1007/s00418-024-02308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Long-term radiofrequency radiation (RFR) exposure, which adversely affects organisms, deteriorates testicular functions. Misfolding or unfolding protein accumulation in the endoplasmic reticulum (ER) initiates an intracellular reaction known as ER stress (ERS), which activates the unfolded protein response (UPR) for proteostasis. Since both RFR exposure and ERS can cause male infertility, we hypothesized that RFR exposure causes ERS to adversely affect testicular functions in rats. To investigate role of ERS in mediating RFR effects on rat testis, we established five experimental groups in male rats: control, short-term 2100-megahertz (MHz) RFR (1-week), short-term sham (sham/1-week), long-term 2100-MHz RFR (10-week), and long-term sham (sham/10-week). ERS markers Grp78 and phosphorylated PERK (p-Perk) levels and ERS-related apoptosis markers Chop and caspase 12 were investigated by immunohistochemistry, immunoblotting, and quantitative real-time polymerase chain reaction (qPCR). Long-term RFR exposure increased Grp78, p-Perk, and Chop levels, while short-term RFR exposure elevated Chop and caspase 12 levels. Chop expression was not observed in spermatogonia and primary spermatocytes, which may protect spermatogonia and primary spermatocytes against RFR-induced ERS-mediated apoptosis, thereby allowing transmission of genetic material to next generations. While short and long-term RFR exposures trigger ERS and ERS-related apoptotic pathways, further functional analyses are needed to elucidate whether this RFR-induced apoptosis has long-term male infertility effects.
Collapse
Affiliation(s)
- Esma Kirimlioglu
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey.
| | - Asli Okan Oflamaz
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Bozok University, Yozgat, Turkey
| | - Enis Hidisoglu
- Departments of Biophysics, Faculty of Medicine, Faculty of Engineering, Akdeniz University, Antalya, Turkey
- Department of Drug Science, NIS Centre, University of Turin, Turin, Italy
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Departments of Biophysics, Faculty of Medicine, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Necdet Demir
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
2
|
Katirci E, Kirimlioglu E, Oflamaz AO, Hidisoglu E, Cernomorcenco A, Yargıcoğlu P, Ozen S, Demir N. Expression levels of tam receptors and ligands in the testes of rats exposed to short and middle-term 2100 MHz radiofrequency radiation. Bioelectromagnetics 2024; 45:235-248. [PMID: 38725116 DOI: 10.1002/bem.22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 06/18/2024]
Abstract
With advances in technology, the emission of radiofrequency radiation (RFR) into the environment, particularly from mobile devices, has become a growing concern. Tyro 3, Axl, and Mer (TAM) receptors and their ligands are essential for spermatogenesis and testosterone production. RFR has been shown to induce testicular cell apoptosis by causing inflammation and disrupting homeostasis. This study aimed to investigate the role of TAM receptors and ligands in the maintenance of homeostasis and elimination of apoptotic cells in the testes (weeks), short-term sham exposure (sham/1 week), and middle-term sham exposure (sham/10 weeks). Testicular morphology was assessed using hematoxylin-eosin staining, while immunohistochemical staining was performed to assess expression levels of TAM receptors and ligands in the testes of all groups. The results showed that testicular morphology was normal in the control, sham/1 week, and sham/10 weeks groups. However, abnormal processes of spermatogenesis and seminiferous tubule morphology were observed in RFR exposure groups. Cleaved Caspase 3 immunoreactivity showed statistically significant difference in 1 and 10 weeks exposure groups compared to control group. Moreover, there was no significant difference in the immunoreactivity of Tyro 3, Axl, Mer, Gas 6, and Pros 1 between groups. Moreover, Tyro 3 expression in Sertoli cells was statistically significantly increased in RFR exposure groups compared to the control. Taken together, the results suggest that RFR exposure negatively affects TAM signalling, preventing the clearance of apoptotic cells, and this process may lead to infection and inflammation. As a result, rat testicular morphology and function may be impaired.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Esma Kirimlioglu
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Asli O Oflamaz
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Enis Hidisoglu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
- Department of Biophysics, Faculty of Medicine, Izmir Bakircay University, Izmir, Turkey
- Department of Drug Science and Technology, Universityof Turin, Turin, Italy
| | - Alexandra Cernomorcenco
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Piraye Yargıcoğlu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Akdeniz University Faculty of Engineering, Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
3
|
Er H, Tas GG, Soygur B, Ozen S, Sati L. Acute and Chronic Exposure to 900 MHz Radio Frequency Radiation Activates p38/JNK-mediated MAPK Pathway in Rat Testis. Reprod Sci 2022; 29:1471-1485. [PMID: 35015292 DOI: 10.1007/s43032-022-00844-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
The use of electronic devices such as mobile phones has had a long stretch of rapid growth all over the world. Therefore, exposure to radio frequency radiation (RFR) has increased enormously. Here, we aimed to assess the balance between cell death and proliferation and also investigate the involvement of the JNK/p38 MAPK signaling pathway in the testis of rats exposed to 900 MHz RFR in acute and chronic periods (2 h/day, 5 days/week) for 1 or 10 weeks, respectively. The expression of proliferating cell nuclear antigen (PCNA), Bcl-xL, cleaved caspase-3, phosphorylated-JNK (p-JNK), and phosphorylated-p38 (p-p38) was analyzed in line with histopathology and TUNEL analysis in rat testis. There were no histopathological differences between sham and RFR groups in the acute and chronic groups. PCNA expression was not altered between groups in both periods. However, alterations for cleaved caspase-3 and Bcl-xL were observed depending on the exposure period. TUNEL analysis showed a significant increase in the RFR group in the acute period, whereas no difference in the chronic groups for the apoptotic index was reported. In addition, both p-p38 and p-JNK protein expressions increased significantly in RFR groups in both periods. Our study indicated that 900 MHz RFR might result in alterations during acute period exposure for several parameters, but this can be ameliorated in the chronic period in rat testis. Here, we also report the involvement of the p38/JNK-mediated MAPK pathway after exposure to 900 MHz RFR. Hence, this information might shed light in future studies toward detailed molecular mechanisms in male reproduction and infertility.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Akdeniz University School of Medicine, Akdeniz University, Antalya, Turkey.,Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
4
|
Er H, Basaranlar G, Ozen S, Demir N, Kantar D, Yargicoglu P, Derin N. The effects of acute and chronic exposure to 900 MHz radiofrequency radiation on auditory brainstem response in adult rats. Electromagn Biol Med 2020; 39:374-386. [PMID: 32865045 DOI: 10.1080/15368378.2020.1813159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to determine the effects of short and long-term RFR exposure on ABR by evaluating lipid peroxidation and antioxidant status in adult rats. Sixty male albino Wistar rats were randomly divided into four groups. S1:1 week sham, S10:10 weeks sham, E1:1 week RFR, E10:10 weeks RFR. Experimental group rats were exposed to RFR 2 h/day, 5 days/week during the test period. Sham rats were kept in the same conditions without RFR. After the experiment, ABRs were recorded from the mastoids of rats using tone burst acoustic stimuli. Biochemical investigations in rat brain and ultrastructural analysis in temporal cortex were performed. ABR wave I latency prolonged in E1-group and shortened in E10-group compared to their shams. TBARS level increased in E1-group, decreased in E10-group, on the contrary, SOD and CAT activities and GSH level decreased in E1-group, increased in E10-group compared to their sham groups. Edema was present in the neuron and astrocyte cytoplasms and astrocyte end-feet in both E1 and E10 groups. Our results suggest that 900 MHz RFR may have negative effects on the auditory system in acute exposure and no adverse effects in chronic exposure without weekends.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey.,Electron Microscopy Image Analyzing Unit, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Goksun Basaranlar
- Department of Biophysics, Institute of Health Sciences, Akdeniz University , Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University , Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Piraye Yargicoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| |
Collapse
|
5
|
Wang HY, Li CF, Yu C, Dong J, Zou Y, Nie BB, Li JK, Ma L, Peng RY. The specific absorption rate in different brain regions of rats exposed to electromagnetic plane waves. Sci Rep 2019; 9:13277. [PMID: 31527693 PMCID: PMC6746715 DOI: 10.1038/s41598-019-49719-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
Accurate dosimetry of a specific brain region in rats exposed to an electromagnetic field (EMF) is essential for studies focusing on dose-effect relationship of the region. However, only dosimetry of whole brain or whole body were evaluated in most of previous studies. In this study, a numerical voxel rat model with 10 segmented brain regions was constructed. Then, the effects of frequency, incidence direction, and E-polarization direction of plane wave EMF on brain region averaged specific absorption rate (BRSAR) of rats were investigated. At last, the reliability of using whole-body averaged SAR (WBDSAR) and whole-brain averaged SAR (WBRSAR) as estimations of BRSAR were also evaluated. Our results demonstrated that the BRSAR depended on the frequency, incidence direction, and E-polarization direction of the EMF. Besides, the largest deviation could be up to 13.1 dB between BRSAR and WBDSAR and 9.59 dB between BRSAR and WBRSAR. The results suggested that to establish an accurate dose-effect relationship, the variance of the BRSAR induced by alteration of frequency, incidence direction, and E-polarization direction of EMF should be avoided or carefully evaluated. Furthermore, the use of WBDSAR and WBRSAR as estimations of BRSAR should be restricted to certain conditions such that the deviations are not too large.
Collapse
Affiliation(s)
- Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chun-Fang Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.,First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Chao Yu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Bin-Bin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Kai Li
- Hainan Hospital of PLA General Hospital, Sanya, 572013, Hainan, China
| | - Lin Ma
- First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
6
|
Hidisoglu E, Kantar-Gok D, Ozen S, Yargicoglu P. Short-term 2.1 GHz radiofrequency radiation treatment induces significant changes on the auditory evoked potentials in adult rats. Int J Radiat Biol 2018; 94:858-871. [DOI: 10.1080/09553002.2018.1492166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Enis Hidisoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar-Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Sukru Ozen
- Engineering Faculty, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
7
|
López-Furelos A, Leiro-Vidal JM, Salas-Sánchez AÁ, Ares-Pena FJ, López-Martín ME. Evidence of cellular stress and caspase-3 resulting from a combined two-frequency signal in the cerebrum and cerebellum of sprague-dawley rats. Oncotarget 2018; 7:64674-64689. [PMID: 27589837 PMCID: PMC5323107 DOI: 10.18632/oncotarget.11753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/16/2016] [Indexed: 12/30/2022] Open
Abstract
Multiple simultaneous exposures to electromagnetic signals induced adjustments in mammal nervous systems. In this study, we investigated the non-thermal SAR (Specific Absorption Rate) in the cerebral or cerebellar hemispheres of rats exposed in vivo to combined electromagnetic field (EMF) signals at 900 and 2450 MHz. Forty rats divided into four groups of 10 were individually exposed or not exposed to radiation in a GTEM chamber for one or two hours. After radiation, we used the Chemiluminescent Enzyme-Linked Immunosorbent Assay (ChELISA) technique to measure cellular stress levels, indicated by the presence of heat shock proteins (HSP) 90 and 70, as well as caspase-3-dependent pre-apoptotic activity in left and right cerebral and cerebellar hemispheres of Sprague Dawley rats. Twenty-four hours after exposure to combined or single radiation, significant differences were evident in HSP 90 and 70 but not in caspase 3 levels between the hemispheres of the cerebral cortex at high SAR levels. In the cerebellar hemispheres, groups exposed to a single radiofrequency (RF) and high SAR showed significant differences in HSP 90, 70 and caspase-3 levels compared to control animals. The absorbed energy and/or biological effects of combined signals were not additive, suggesting that multiple signals act on nervous tissue by a different mechanism.
Collapse
Affiliation(s)
- Alberto López-Furelos
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Manuel Leiro-Vidal
- Institute of Alimentary Analysis, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aarón Ángel Salas-Sánchez
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco José Ares-Pena
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Elena López-Martín
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Gökçek-Saraç Ç, Er H, Kencebay Manas C, Kantar Gok D, Özen Ş, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int J Radiat Biol 2017; 93:980-989. [DOI: 10.1080/09553002.2017.1337279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Faculty of Engineering, Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey
| | - Hakan Er
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ceren Kencebay Manas
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Şükrü Özen
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
9
|
Xie T, Zaidi H. Development of computational small animal models and their applications in preclinical imaging and therapy research. Med Phys 2016; 43:111. [PMID: 26745904 DOI: 10.1118/1.4937598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.
Collapse
Affiliation(s)
- Tianwu Xie
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland; Geneva Neuroscience Center, Geneva University, Geneva CH-1205, Switzerland; and Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
10
|
Collin A, Perrin A, Cretallaz C, Pla S, Arnaud-Cormos D, Debouzy JC, Leveque P. In vivo setup characterization for pulsed electromagnetic field exposure at 3 GHz. Phys Med Biol 2016; 61:5925-41. [PMID: 27436662 DOI: 10.1088/0031-9155/61/16/5925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An in vivo setup for pulsed electric field exposure at 3 GHz is proposed and characterized in this work. The exposure system allows far field, whole-body exposure of six animals placed in Plexiglas cages with a circular antenna. Chronic exposures under 18 W incident average power (1-4 kW peak power) and acute exposures under 56 W incident average power (4.7 kW peak power) were considered. Numerical and experimental dosimetry of the setup allowed the accurate calculation of specific absorption rate (SAR) distributions under various exposure conditions. From rat model numerical simulations, the whole-body mean SAR values were 1.3 W kg(-1) under chronic exposures and 4.1 W kg(-1) under acute exposure. The brain-averaged SAR value was 1.8 W kg(-1) and 5.7 W kg(-1) under chronic and acute exposure, respectively. Under acute exposure conditions, a 10 g specific absorption of 1.8 ± 1.1 mJ · kg(-1) value was obtained. With temperature rises below 0.8 °C, as measured or simulated on a gel phantom under typical in vivo exposures, this exposure system provides adequate conditions for in vivo experimental investigations under non-thermal conditions.
Collapse
Affiliation(s)
- A Collin
- Biological Effects of Radiation Department, Biomedical Research Institute of the Army (IRBA-CRSSA), BP 73, Bretigny sur Orge, France. University of Limoges, CNRS, XLIM UMR 7252, 123 av. Albert Thomas, F-87000 Limoges, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Özgür A, Tümkaya L, Terzi S, Kalkan Y, Erdivanlı ÖÇ, Dursun E. Effects of chronic exposure to electromagnetic waves on the auditory system. Acta Otolaryngol 2015; 135:765-70. [PMID: 25836770 DOI: 10.3109/00016489.2015.1032434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONCLUSION The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. OBJECTIVES Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. METHODS Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. RESULTS The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
Collapse
|
12
|
Kim TH, Kim TH, Huang TQ, Jang JJ, Kim MH, Kim HJ, Lee JS, Pack JK, Seo JS, Park WY. Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain. Exp Mol Med 2009; 40:294-303. [PMID: 18587267 DOI: 10.3858/emm.2008.40.3.294] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Even though there is no direct evidence to prove the cellular and molecular changes induced by radiofrequency (RF) radiation itself, we cannot completely exclude the possibility of any biological effect of mobile phone frequency radiation. We established a carousel-type exposure chamber for 849 MHz or 1763 MHz of mobile phone RF radiation to expose RF to the heads of C57BL mice. In this chamber, animals were irradiated intermittently at 7.8 W/kg for a maximum of 12 months. During this period, the body weights of 3 groups-sham, 849 MHz RF, and 1763 MHz RF-did not show any differences between groups. The brain tissues were obtained from 3 groups at 6 months and 12 months to examine the differences in histology and cell proliferation between control and RF exposure groups, but we could not find any change upon RF radiation. Likewise, we could not find changes in the expression and distribution of NeuN and GFAP in hippocampus and cerebellum, or in cell death by TUNEL assay in RF exposure groups. From these data, we conclude that the chronic exposure to 849 MHz and 1763 MHz RF radiation at a 7.8 W/kg specific absorption rate (SAR) could not induce cellular alterations such as proliferation, death, and reactive gliosis.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- LCHUN Genomic Medicine Institute, MRC, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lopez-Martin E, Bregains JC, Jorge-Barreiro FJ, Sebastián-Franco JL, Moreno-Piquero E, Ares-Pena FJ. AN EXPERIMENTAL SET-UP FOR MEASUREMENT OF THE POWER ABSORBED FROM 900 MHZ GSM STANDING WAVES BY SMALL ANIMALS, ILLUSTRATED BY APPLICATION TO PICROTOXIN-TREATED RATS. ACTA ACUST UNITED AC 2008. [DOI: 10.2528/pier08101307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Lopresto V, Pinto R, De Vita A, Mancini S, Galloni P, Marino C, Ravazzani P, Lovisolo GA. Exposure setup to study potential adverse effects at GSM 1800 and UMTS frequencies on the auditory systems of rats. RADIATION PROTECTION DOSIMETRY 2007; 123:473-82. [PMID: 17164273 DOI: 10.1093/rpd/ncl504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To investigate possible biological effects of exposure to electromagnetic (EM) fields at the frequencies of global system for mobile communication (GSM) 1800 system and universal mobile telecommunication system (UMTS) on the auditory system of rats, an exposure setup for in vivo experiments is presented. The study was carried out in the framework of two European research projects. The target of the investigation was the cochlea. A dosimetric study was performed, both numerically and through direct measurements, to assess the interaction of the radiated fields and the dose distribution in the biological target. For the local exposure of rats, a loop antenna operating at the frequency bands of interest was designed, realised and characterised through numerical and experimental dosimetric procedures. Moreover, an exposure apparatus was set up, consisting of three arrays of four loop antennas, placed on three levels, thus allowing simultaneous exposure of 12 rats to give statistical power to the experiments. To isolate the exposure arrays, the setup was assembled by a wooden rack with EM field absorbing panels, inserted among the levels and at the four sides of the rack. Isolation was verified by direct measurements. Two exposure arrays were simultaneously supplied, whereas the third one was used for sham exposure. Blind exposure was achieved through a black box, hiding physical connections to the microwave power supply. During exposure sessions, rats were restrained in special plastic jigs for repeatable positioning, thus assuring the fixed level of dose in the target.
Collapse
Affiliation(s)
- V Lopresto
- Section of Toxicology and Biomedical Sciences, Casaccia Research Centre, National Agency for New Technologies Energy and Environment (ENEA), via Anguillarese 301, 00123, S. Maria di Galeria, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kainz W, Nikoloski N, Oesch W, Berdiñas-Torres V, Fröhlich J, Neubauer G, Kuster N. Development of novel whole-body exposure setups for rats providing high efficiency, National Toxicology Program (NTP) compatibility and well-characterized exposure. Phys Med Biol 2006; 51:5211-29. [PMID: 17019034 DOI: 10.1088/0031-9155/51/20/009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents the design, optimization, realization and verification of novel whole-body exposure setups for rats. The setups operating at 902 MHz and 1747 MHz provide highly efficient, National Toxicology Program (NTP) compatible and well-characterized exposures. They are compared to existing concepts of exposure setups with respect to efficiency, induced field uniformity, good laboratory practice (GLP) compatibility and cost. The novel exposure setup consists of a circular cascade of 17 sectorial waveguides excited by a novel loop antenna placed in the centre. The 70% overall efficiency of the exposure setup surpasses comparable values of existing setups. A field uniformity inside the phantom of more than 86% for the 1g cubical averaged specific absorption rate (SAR) within +/-5 dB of the whole-body SAR (WB-SAR) was attained. The uniformity of the exposure inside the setup, defined as the variation of the WB-SAR between animals, was better than +/-24%. Using only stainless steel, gold and polycarbonate in the vicinity of the animals ensured full GLP compatibility. The entire exposure system features fully automated computer controlled exposure and data monitoring, data storing and failure handling. Therefore, the proposed exposure system can be used to run blinded large scale, long-term exposure studies.
Collapse
Affiliation(s)
- Wolfgang Kainz
- Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), 12725 Twinbrook Parkway, Rockville, MD 20852, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kuster N, Torres VB, Nikoloski N, Frauscher M, Kainz W. Methodology of detailed dosimetry and treatment of uncertainty and variations for in vivo studies. Bioelectromagnetics 2006; 27:378-91. [PMID: 16615059 DOI: 10.1002/bem.20219] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Detailed and accurate dosimetric information is a basic precondition for acquiring adequate interpretations and valuations of in vivo studies testing radiofrequency (RF) electromagnetic fields (EMF). Instantaneous locally induced fields depend on many parameters, for example, orientation of the animal with respect to the incident field, animal size and posture, and tissue distribution. These parameters are often constrained, resulting in significant uncertainties in the dosimetric assessment of the exposure, averaged over all animals and the entire experimental phase, as well as in significant variations of the local exposures during the experiment. A sufficient analysis should therefore include (1) average and peak spatial specific absorption rate (SAR) values for the whole body and specific organs, (2) the uncertainty of each assessed SAR value, and (3) the short term and long term SAR variations between the tissues of individual animals. A methodology to obtain this pertinent information is developed and proposed in this paper. Using this methodology the dosimetry of a rat exposure apparatus operating at the carrier frequency of 1747 MHz, previously developed for a 2-year bioassay study within the European Union project PERFORM, was obtained. We have demonstrated that comprehensive dosimetric data can be obtained with reasonable effort using the proposed method, providing that the exposure setup is soundly formulated.
Collapse
Affiliation(s)
- Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS Foundation), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
17
|
Anderson LE, Sheen DM, Wilson BW, Grumbein SL, Creim JA, Sasser LB. Two-Year Chronic Bioassay Study of Rats Exposed to a 1.6 GHz Radiofrequency Signal. Radiat Res 2004; 162:201-10. [PMID: 15387148 DOI: 10.1667/rr3208] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this study was to determine whether long-term exposure to a 1.6 GHz radiofrequency (RF) field would affect the incidence of cancer in Fischer 344 rats. Thirty-six timed-pregnant rats were randomly assigned to each of three treatment groups: two groups exposed to a far-field RF Iridium signal and a third group that was sham exposed. Exposures were chosen such that the brain SAR in the fetuses was 0.16 W/kg. Whole-body far-field exposures were initiated at 19 days of gestation and continued at 2 h/day, 7 days/week for dams and pups after parturition until weaning (approximately 23 days old). The offspring (700) of these dams were selected, 90 males and 90 females for each near-field treatment group, with SAR levels in the brain calculated to be as follows: (1) 1.6 W/kg, (2) 0.16 W/kg and (3) near-field sham controls, with an additional 80 males and 80 females as shelf controls. Confining, head-first, near-field exposures of 2 h/day, 5 days/week were initiated when the offspring were 36 +/- 1 days old and continued until the rats were 2 years old. No statistically significant differences were observed among treatment groups for number of live pups/litter, survival index, and weaning weights, nor were there differences in clinical signs or neoplastic lesions among the treatment groups. The percentages of animals surviving at the end of the near-field exposure were not different among the male groups. In females a significant decrease in survival time was observed for the cage control group.
Collapse
|