1
|
Bektas H, Nalbant A, Akdag MB, Demir C, Kavak S, Dasdag S. Adverse effects of 900, 1800 and 2100 MHz radiofrequency radiation emitted from mobile phones on bone and skeletal muscle. Electromagn Biol Med 2023; 42:12-20. [PMID: 36794487 DOI: 10.1080/15368378.2023.2179065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The goal of this study was to biomechanically and morphologically research both the impact of mobile phone like radiofrequency radiations (RFR) on the tibia and the effects on skeletal muscle through oxidative stress parameters. Fifty-six rats (200-250 g) were put into groups: healthy sham (n = 7), healthy RFR (900, 1800, 2100 MHz) (n = 21), diabetic sham (n = 7) and diabetic RFR (900, 1800, 2100 MHz) (n = 21). Over a month, each group spent two hours/day in a Plexiglas carousel. The rats in the experimental group were exposed to RFR, but the sham groups were not. At the end of the experiment, the right tibia bones and skeletal muscle tissue were removed. The three-point bending test and radiological evaluations were performed on the bones, and CAT, GSH, MDA, and IMA in muscles were measured. There were differences in biomechanics properties and radiological evaluations between the groups (p < .05). In the measurements in the muscle tissues, significant differences were statistically found (p < .05). The average whole-body SAR values for GSM 900, 1800 and 2100 MHz were 0.026, 0.164, and 0.173 W/kg. RFRs emitted from mobile phone may cause adverse effects on tibia and skeletal muscle health, though further studies are needed.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Asrin Nalbant
- Department of Anatomy, Medical School of Bakircay University, Izmir, Turkey
| | - Mahmut Berat Akdag
- Department of Physiotherapy and Rehabilitation, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Canan Demir
- Health Services Vocational High School, Yuzuncu Yil University, Van, Turkey
| | - Servet Kavak
- Department of Biophysics, Medical School of Bakircay University, Izmir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
2
|
Physical Differences between Man-Made and Cosmic Microwave Electromagnetic Radiation and Their Exposure Limits, and Radiofrequencies as Generators of Biotoxic Free Radicals. RADIATION 2022. [DOI: 10.3390/radiation2040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical arguments for radiofrequency radiation exposure limits are currently based on the principle that radio frequencies (RF) and electromagnetic fields (EMFs) are non-ionising, and their exposure limits are even 100-fold lower than those emitted from the Sun in the whole RF-EMF spectrum. Nonetheless, this argument has been challenged by numerous experimental and theoretical studies on the diverse biological effects of RF-EMF at much lower power density (W/m2) levels than today’s exposing limits. On the other hand, less attention has been given to counterarguments based on the differences in the physics concepts underlying man-made versus natural electromagnetic radiation (EMR) and on the fact that man’s biology has been adapted to the natural EMR levels reaching Earth’s surface at single EMF wavelengths, which are the natural limits of man’s exposure to EMFs. The article highlights the main points of interaction of natural and man-made radiation with biomatter and reveals the physical theoretical background that explains the effects of man-made microwave radiation on biological matter. Moreover, the article extends its analysis on experimental quantum effects, establishing the “ionising-like” effects of man-made microwave radiation on biological matter.
Collapse
|
3
|
Abstract
Brain-computer interfaces and wearable neurotechnologies are now used to measure real-time neural and physiologic signals from the human body and hold immense potential for advancements in medical diagnostics, prevention, and intervention. Given the future role that wearable neurotechnologies will likely serve in the health sector, a critical state-of-the-art assessment is necessary to gain a better understanding of their current strengths and limitations. In this chapter we present wearable electroencephalography systems that reflect groundbreaking innovations and improvements in real-time data collection and health monitoring. We focus on specifications reflecting technical advantages and disadvantages, discuss their use in fundamental and clinical research, their current applications, limitations, and future directions. While many methodological and ethical challenges remain, these systems host the potential to facilitate large-scale data collection far beyond the reach of traditional research laboratory settings.
Collapse
|
4
|
Boga A, Emre M, Sertdemir Y, Akillioglu K, Binokay S, Demirhan O. The effect of 900 and 1800 MHz GSM-like radiofrequency irradiation and nicotine sulfate administration on the embryonic development of Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:378-390. [PMID: 25531835 DOI: 10.1016/j.ecoenv.2014.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate the effects of GSM-like radiofrequency electromagnetic radiation (RF EMR) and nicotine sulfate (NS) exposure on Xenopus embryonic development.The developmental effects of GSM-like RF-EMR (900-1800 MHz, at a SAR value of 1W/kg and NS on Xenopus laevis embryos were investigated). Following the application of radiofrequency radiation and/or NS administration, the embryos were closely examined in order to determine their possible teratogenic effects. Xenopus frogs obtained from the Department of Physiology of the Cukurova University, in accordance described by the Standard Guide of the American Society for Testing and Materials (ASTM). Following the exposure of Xenopus embryos to RF-EMR at 900 and 1800 MHz (1.0W/kg) for 4, 6 and 8h; the whole body specific energy absorption rate (SAR) of the embryos was calculated. With the exception of irradiation at 1800 MHz no dramatic developmental anomalies were observed in the Xenopus embryos in association with RF-EMR applications. Combined RF-EMR and NS applications resulted in dramatic abnormalities and death among the Xenopus embryos. The study results indicated that GSM-like RF-EMR (e.g. radiation from cell phones) was not as harmful to Xenopus embryos as might have been expected. However, the combined effects of GSM-like RF-EMR and NS on Xenopus embryos were more severe than the effect of RF-EMR or NS alone. In conclusion, the study results appear to suggest that the combined use of nicotine and cell phones might result in more pronounced detrimental effects on the health of smokers.
Collapse
Affiliation(s)
- Ayper Boga
- Department of Physiology, Cukurova University Medical Faculty, Adana, Turkey.
| | - Mustafa Emre
- Department of Biophysics, Cukurova University Medical Faculty, Adana, Turkey
| | - Yasar Sertdemir
- Department of Biostatistics, Cukurova University Medical Faculty, Adana, Turkey
| | - Kubra Akillioglu
- Department of Physiology, Cukurova University Medical Faculty, Adana, Turkey
| | - Secil Binokay
- Department of Physiology, Cukurova University Medical Faculty, Adana, Turkey
| | - Osman Demirhan
- Department of Medical Biology, Cukurova University Medical Faculty, Adana, Turkey
| |
Collapse
|
5
|
Leszczynski D. Effects of radiofrequency-modulated electromagnetic fields on proteome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:101-6. [PMID: 23378005 DOI: 10.1007/978-94-007-5896-4_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteomics, the science that examines the repertoire of proteins present in an organism using both high-throughput and low-throughput techniques, might give a better understanding of the functional processes ongoing in cells than genomics or transcriptomics, because proteins are the molecules that directly regulate physiological processes. Not all changes in gene expression are necessarily reflected in the proteome. Therefore, using proteomics approaches to study the effects of RF-EMF might provide information about potential biological and health effects. Especially that the RF-EMF used in wireless communication devices has very low energy and is unable to directly induce gene mutations.
Collapse
Affiliation(s)
- Dariusz Leszczynski
- STUK - Radiation and Nuclear Safety Authority, Laippatie 4, Helsinki, 00880, Finland.
| |
Collapse
|
6
|
Marino C, Lagroye I, Scarfì MR, Sienkiewicz Z. Are the young more sensitive than adults to the effects of radiofrequency fields? An examination of relevant data from cellular and animal studies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:374-85. [DOI: 10.1016/j.pbiomolbio.2011.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
|
7
|
Gholampour F, Owji S, Javadifar T. Chronic Exposure to Extremely Low Frequency Electromagnetic Field Induces Mild Renal Damages in Rats. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ijzr.2011.393.400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Moussa MMR. Review on health effects related to mobile phones. Part II: results and conclusions. J Egypt Public Health Assoc 2011; 86:79-89. [PMID: 22173110 DOI: 10.1097/01.epx.0000406204.36949.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Part 1 of this review was published in the Journal of Egyptian Association of Public Health 2010; 85(5, 6):337-345. It included the introduction and methodology. It was based on reviewing the literature published in the last 10 years (2000-2010). METHODS Searches were made electronically through various search engines and health-related databases, and manually through journals, reports, and conference proceedings. The references used in the introduction of part 1 were mainly WHO reports, textbooks, and nonserial publications. RESULTS In part 2, the literature published in 2011 was added to the yield and the results and conclusions are based on the updated search. In this literature search, 69 research articles (epidemiologic, experimental, cellular, and animal studies), 17 systemic or meta-analysis review studies, and four reports were included. CONCLUSION The evidence presented in these peer-reviewed publications did not provide a consistent pattern that exposure to mobile phones is detrimental to health. Only studies associating mobile phone use during driving with road traffic accidents and those investigating electromagnetic interference with personal or hospital medical electronic devices showed consistent results. Regarding children, there are currently little data on cell phone use and health effects, including the risk of cancer. Further experimental and epidemiologic studies are needed to seek explanations for the controversies in studies on mobile phones so far. These studies should apply sound methodology for exposure assessment of mobile phone radiation and should focus on the effects of long-term use (more than 10 years). Cohort studies, in particular, should be established to investigate the long-term effects of mobile phone use on brain cancer as well as to investigate the possible health effects among children.
Collapse
Affiliation(s)
- Mayada M R Moussa
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Fragopoulou AF, Koussoulakos SL, Margaritis LH. Cranial and postcranial skeletal variations induced in mouse embryos by mobile phone radiation. PATHOPHYSIOLOGY 2010; 17:169-77. [DOI: 10.1016/j.pathophys.2009.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/26/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022] Open
|
10
|
Budak GG, Muluk NB, Budak B, Oztürk GG, Apan A, Seyhan N. Effects of GSM-like radiofrequency on distortion product otoacoustic emissions of rabbits: comparison of infants versus adults. Int J Pediatr Otorhinolaryngol 2009; 73:1143-7. [PMID: 19477533 DOI: 10.1016/j.ijporl.2009.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/27/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the potential hazardous effects of 1800 MHz Global System for Mobile Communications-like (GSM-like) Radiofrequency (RF) exposure on the cochlear functions of female infant and adult rabbits by measuring Distortion Product Otoacoustic Emission (DPOAE) response amplitudes. METHODS Eighteen each one-month-old New Zealand White female rabbits and eighteen each 13-month-old adult rabbits were included into the study. They were randomly divided into four groups. Nine infant rabbits (Group 1) were not exposed to 1800 MHz GSM-like RF (Infant Control, C-In). Nine infant rabbits (Group 2) were exposed to 1800 MHz GSM-like RF, 15 min daily for 7 days after they reached one-month of age (Infant RF, RF-In). Nine adult rabbits were not exposed to 1800 MHz GSM-like RF, 15 min daily for 7 (Adult Control, C-Ad). Nine adult rabbits were exposed to 1800 MHz GSM-like RF, 15 min daily for 7 days (Adult RF, RF-Ad). Cochlear functions were assessed by DPOAEs at 1.0-8.0 kHz. RESULTS At 1.0-2.0 and 6.0 kHz, the mean DPOAE values of Group 2 were significantly higher than that of Group 1. At 3.0-8.0 kHz, the mean DPOAE values of Group 4 were significantly lower than that of Group 1. At 6.0-8.0 kHz, the mean DPOAE values of Group 2 were significantly higher than that of Group 3. At 1.0-8.0 kHz, the mean DPOAE values of Group 4 were significantly lower than that of Group 2. At 1.0-8.0 kHz, the mean DPOAE values of Group 4 were significantly lower than that of Group 3. CONCLUSION Harmful effects of GSM-like 1800 MHz RF exposure was detected more in the adult female rabbits than infant female rabbits by DPOAE measurement. Prolonged exposure and hyperthermia related to the power density of applied RFR, increasing the temperature in the ear canal, may decrease the DPOAE amplitudes. Water containing medium in the middle ear of infant rabbits may play the protective role **from the RF damage.
Collapse
Affiliation(s)
- Gürer G Budak
- Gazi University, Faculty of Medicine, Nanomedicine Research Laboratory, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
11
|
Budak GG, Muluk NB, Budak B, Oztürk GG, Apan A, Seyhan N. Effects of intrauterine and extrauterine exposure to GSM-like radiofrequency on distortion product otoacoustic emissions in infant male rabbits. Int J Pediatr Otorhinolaryngol 2009; 73:391-9. [PMID: 19108901 DOI: 10.1016/j.ijporl.2008.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the potential hazardous effects of intrauterine (IU) and/or extrauterine (EU) exposure to 1800 MHz Global System for Mobile Communications-like (GSM-like) radiofrequency (RF) on the cochlear functions of infant rabbits by measuring distortion product otoacoustic emission (DPOAE) response amplitudes. METHODS Thirty-six white infant male New Zealand rabbits each 1-month-old were included in the study. The animals were randomly divided into four groups. Nine infant rabbits (Group 1) were not exposed to 1800 MHz GSM-like RF (Control-C). Nine infant rabbits (Group 2) were exposed to 1800 MHz GSM-like RF, 15 min daily for 14 days after they reached 1-month of age (extrauterine-EU). Nine infant rabbits (Group 3) were exposed to 1800 MHz GSM-like RF, 15 min daily for 7 days in the intrauterine period (between 15th and 22nd days of the gestational period) (intrauterine-IU). Nine infant rabbits (Group 4) were exposed to 1800 MHz GSM-like RF, 15 min daily for 7 days in the intrauterine period (between 15th and 22nd days of the gestational period) and 15 min daily for 14 days after they reached to 1-month of age (IU+EU). The cochlear functions were assessed by DPOAEs at 1.0-8.0 kHz. RESULTS At 1.5 kHz, the mean DPOAE amplitude of Group 3 was higher than that of the controls and Group 2; and the mean DPOAE value of Group 4 was higher than that of the controls and Group 2. At 2.0 kHz, the mean DPOAE amplitude of Group 4 was higher than that of Group 2. At 3.0 kHz, the mean DPOAE amplitude of Group 4 was higher than that of the controls and Group 2. At 4.0 kHz, the mean DPOAE amplitude of Group 2 was lower than that of the controls, while the mean value of Group 4 was higher than the mean value of the controls and Group 2. At 6.0 kHz, the mean DPOAE amplitude of Group 2 was lower than that of the control group; however, the mean value of Group 4 was higher than that of Group 2. At 1.0 and 8.0 kHz, no significant differences were found among the four groups. CONCLUSION Prolonged exposure and hyperthermia related to the power density of applied RF, increasing the temperature in the ear canal, may affect DPOAE amplitudes. Harmful effects of RF are mainly observed as a decrease in DPOAE amplitudes at 4.0-6.0 kHz during extrauterine exposure in infancy. During the intrauterine period, the water content of the middle and inner ear and amnion fluid may play a protective role. Therefore, children must be protected from RF exposure. The use of mobile phones at short distances from the ear of the infants should be avoided because of the lower thickness of the anatomical structure in infancy.
Collapse
Affiliation(s)
- Gürer G Budak
- Gazi University, Faculty of Medicine, Nanomedicine Research Laboratory, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
12
|
Makker K, Varghese A, Desai NR, Mouradi R, Agarwal A. Cell phones: modern man's nemesis? Reprod Biomed Online 2009; 18:148-57. [DOI: 10.1016/s1472-6483(10)60437-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Batellier F, Couty I, Picard D, Brillard JP. Effects of exposing chicken eggs to a cell phone in "call" position over the entire incubation period. Theriogenology 2008; 69:737-45. [PMID: 18255134 DOI: 10.1016/j.theriogenology.2007.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 12/10/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to assess the effects of exposing fertile chicken eggs to a cell phone repeatedly calling a ten-digit number at 3-min intervals over the entire period of incubation. A pre-experiment was performed first to adjust incubation conditions in an experimental chamber devoid of metallic content and without automatic turning until the overall performance of hatchability was reproducible in the absence of the cell phone. The experimental period consisted of a series of 4 incubations referred to as "replicates". For each replicate, one batch of 60 eggs was exposed to the immediate environment (<or= 25 cm) of a cell phone in the "call" position (exposed group), while another batch of 60 eggs, 1.5m away from the exposed group and also in the incubation chamber, was exposed to a similar cell phone in the "off" position (sham group). For each replicate, 2 other groups each of 60 eggs were also incubated, one in a standard mini-incubator ("Control I" group) and the second in a standard medium size incubator ("Control II" group). Temperature, relative humidity and electromagnetic fields in the experimental chamber were permanently monitored over the entire experiment. A significantly higher percentage of embryo mortality was observed in the "exposed" compared to the "sham" group in 2 of the 4 replicates (p< .05). In comparison with control groups, additional embryo mortality in the exposed group occurred mainly between Days 9 and 12 of incubation but a causal relationship between the intensity of the electric field and embryo mortality could not be established.
Collapse
Affiliation(s)
- F Batellier
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | | | | | | |
Collapse
|
14
|
Paparini A, Rossi P, Gianfranceschi G, Brugaletta V, Falsaperla R, De Luca P, Romano Spica V. No evidence of major transcriptional changes in the brain of mice exposed to 1800 MHz GSM signal. Bioelectromagnetics 2008; 29:312-23. [DOI: 10.1002/bem.20399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|