1
|
Wyszkowska J, Kobak J, Aonuma H. Electromagnetic field exposure affects the calling song, phonotaxis, and level of biogenic amines in crickets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93255-93268. [PMID: 37507567 PMCID: PMC10447283 DOI: 10.1007/s11356-023-28981-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The electromagnetic field (EMF) is ubiquitous in the environment, constituting a well-known but poorly understood stressor. Few studies have been conducted on insect responses to EMF, although they are an excellent experimental model and are of great ecological importance. In our work, we tested the effects of EMF (50 Hz, 7 mT) on the cricket Gryllus bimaculatus: the male calling song pattern, female mate choice, and levels of biogenic amines in the brain. Exposure of males to EMF increased the number and shortened the period of chips in their calling song (by 2.7% and 5% relative to the control song, respectively), but not the sound frequency. Aged (3-week-old) females were attracted to both natural and EMF-modified male signals, whereas young (1-week-old, virgin) females responded only to the modified signal, suggesting its higher attractance. Stress response of males to EMF may be responsible for the change in the calling song, as suggested by the changes in the amine levels in their brains: an increase in dopamine (by 50% relative to the control value), tyramine (65%), and serotonin (25%) concentration and a decrease in octopamine level (by 25%). These findings indicate that G. bimaculatus responds to EMF, like stressful conditions, which may change the condition and fitness of exposed individuals, disrupt mate selection, and, in consequence, affect the species' existence.
Collapse
Affiliation(s)
- Joanna Wyszkowska
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Jarosław Kobak
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
2
|
Lupi D, Palamara Mesiano M, Adani A, Benocci R, Giacchini R, Parenti P, Zambon G, Lavazza A, Boniotti MB, Bassi S, Colombo M, Tremolada P. Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure. INSECTS 2021; 12:716. [PMID: 34442282 PMCID: PMC8396937 DOI: 10.3390/insects12080716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Honeybee and general pollinator decline is extensively reported in many countries, adding new concern to the general biodiversity loss. Many studies were addressed to assess the causes of pollinator decline, concluding that in most cases multi-stress effects were the most probable ones. In this research, the combined effects of two possible stress sources for bees, pesticides and electromagnetic fields (multi-stress conditions), were analyzed in the field. Three experimental sites were chosen: a control one far from direct anthropogenic stress sources, a pesticide-stress site and multi-stress one, adding to the same exposure to pesticides the presence of an electromagnetic field, coming from a high-voltage electric line. Experimental apiaries were monitored weekly for one year (from April 2017 to April 2018) by means of colony survival, queen activity, storage and brood amount, parasites and pathogens, and several biomarkers in young workers and pupae. Both exposure and effect biomarkers were analysed: among the first, acetylcholinesterase (AChE), catalase (CAT), glutathione S-transferase (GST) and alkaline phosphatase (ALP) and Reactive Oxygen Species (ROS); and among the last, DNA fragmentation (DNAFRAGM) and lipid peroxidation (LPO). Results showed that bee health conditions were the worst in the multi-stress site with only one colony alive out of the four ones present at the beginning. In this site, a complex picture of adverse effects was observed, such as disease appearance (American foulbrood), higher mortality in the underbaskets (common to pesticide-stress site), behavioral alterations (queen changes, excess of honey storage) and biochemical anomalies (higher ALP activity at the end of the season). The overall results clearly indicate that the multi-stress conditions were able to induce biochemical, physiological and behavioral alterations which severely threatened bee colony survival.
Collapse
Affiliation(s)
- Daniela Lupi
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Marco Palamara Mesiano
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Agnese Adani
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (A.A.); (P.T.)
| | - Roberto Benocci
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Roberto Giacchini
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Paolo Parenti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Giovanni Zambon
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Stefano Bassi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Mario Colombo
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Paolo Tremolada
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (A.A.); (P.T.)
| |
Collapse
|
3
|
Todorović D, Ilijin L, Mrdaković M, Vlahović M, Grčić A, Petković B, Perić-Mataruga V. The impact of chronic exposure to a magnetic field on energy metabolism and locomotion of Blaptica dubia. Int J Radiat Biol 2020; 96:1076-1083. [PMID: 32412321 DOI: 10.1080/09553002.2020.1770360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This study deals with a comparative analysis of the effects of chronic exposure to a static magnetic field (SMF) and an extremely low frequency magnetic field (ELF MF) in Blaptica dubia nymphs. The outcome of such treatment on insect and fat body mass, glycogen and total lipid content in the fat body and locomotion, as an energy demanding process, were examined.Materials and methods: One-month-old nymphs of B. dubia were exposed to an SMF (110 mT) or ELF MF (50 Hz, 10 mT) for 5 months. Their locomotion was monitored in the 'open-field' test for 10 min and expressed as travel distance, time in movement and average speed while in motion. After that, fat body mass and content of its main components (glycogen and total lipids) were determined. Nymph body mass was also estimated after 1 and 5 months of MF treatment.Results: Chronic exposure to the SMF and ELF MF decreased nymph body mass and glycogen content in the fat body but increased all examined parameters of locomotion. In addition, chronic SMF treatment elevated total lipid content in the fat body, while chronic ELF MF treatment reduced fat body mass and total lipid content.Conclusions: These findings indicate that B. dubia nymphs are sensitive to the applied MFs and possess different strategies for fuel usage in response to the SMF and ELF MF in order to satisfy increased energy demands and to overcome stressful conditions.
Collapse
Affiliation(s)
- Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Tanasa E, Zaharia C, Hudita A, Radu IC, Costache M, Galateanu B. Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110714. [PMID: 32204026 DOI: 10.1016/j.msec.2020.110714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/17/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
This paper reports the impact of the magnetic field on 3T3-E1 preosteoblasts within silk-fibroin scaffolds decorated with magnetic nanoparticles. Scaffolds were prepared from silk fibroin and poly(2-hydroxyethyl methacrylate) template in which magnetite nanoparticles were embedded. The presence of the magnetite specific peaks within scaffolds compositions was evidenced by RAMAN analysis. Structural investigation was done by XRD analysis and morphological information including internal structure was obtained through SEM analysis. Geometrical evaluation (size and shape), crystalline structure of magnetic nanoparticles and the morphology of the silk fibroin scaffolds were investigated by HR-TEM. Magnetic nanoparticles were distributed within scaffolds structure. Biomineralization of hydroxyapatite on silk fibroin scaffolds with and without magnetic nanoparticles was investigated by an alternate soaking process. SEM images showed that the magnetic scaffolds were covered in an almost continuously film, which has a phase with nanostructured characteristics. This phase, which has as main components Ca and P, is made of lamellar formations. The design of an original magnetic 3D cell culture setup allowed us to observe cellular modifications under the exposure to magnetic field in the presence of magnetic silk fibroin biomaterials. The cellular proliferation potential of 3T3-E1 cell line was found increased under the magnetic field, especially in the presence of the magnetite nanoparticles. In addition, we showed that the low static magnetic field positively impacts on the osteogenic differentiation potential of the cells inside the biomimetic magnetic scaffolds.
Collapse
Affiliation(s)
- Eugenia Tanasa
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, Romania
| | - Catalin Zaharia
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, Romania; Advanced Polymer Materials Group, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, Romania.
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, Romania
| | - Ionut-Cristian Radu
- Advanced Polymer Materials Group, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, Romania.
| |
Collapse
|
5
|
Shepherd S, Hollands G, Godley VC, Sharkh SM, Jackson CW, Newland PL. Increased aggression and reduced aversive learning in honey bees exposed to extremely low frequency electromagnetic fields. PLoS One 2019; 14:e0223614. [PMID: 31600283 PMCID: PMC6786539 DOI: 10.1371/journal.pone.0223614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/24/2019] [Indexed: 01/12/2023] Open
Abstract
Honey bees, Apis mellifera, are a globally significant pollinator species and are currently in decline, with losses attributed to an array of interacting environmental stressors. Extremely low frequency electromagnetic fields (ELF EMFs) are a lesser-known abiotic environmental factor that are emitted from a variety of anthropogenic sources, including power lines, and have recently been shown to have a significant impact on the cognitive abilities and behaviour of honey bees. Here we have investigated the effects of field-realistic levels of ELF EMFs on aversive learning and aggression levels, which are critical factors for bees to maintain colony strength. Bees were exposed for 17 h to 100 μT or 1000 μT ELF EMFs, or a sham control. A sting extension response (SER) assay was conducted to determine the effects of ELF EMFs on aversive learning, while an intruder assay was conducted to determine the effects of ELF EMFs on aggression levels. Exposure to both 100 μT and 1000 μT ELF EMF reduced aversive learning performance by over 20%. Exposure to 100 μT ELF EMFs also increased aggression scores by 60%, in response to intruder bees from foreign hives. These results indicate that short-term exposure to ELF EMFs, at levels that could be encountered in bee hives placed under power lines, reduced aversive learning and increased aggression levels. These behavioural changes could have wider ecological implications in terms of the ability of bees to interact with, and respond appropriately to, threats and negative environmental stimuli.
Collapse
Affiliation(s)
- Sebastian Shepherd
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Georgina Hollands
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - Victoria C. Godley
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - Suleiman M. Sharkh
- Mechatronics, Mechanical Engineering, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - Chris W. Jackson
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - Philip L. Newland
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| |
Collapse
|
6
|
Todorović D, Ilijin L, Mrdaković M, Vlahović M, Filipović A, Grčić A, Perić-Mataruga V. Long-term exposure of cockroach Blaptica dubia (Insecta: Blaberidae) nymphs to magnetic fields of different characteristics: effects on antioxidant biomarkers and nymphal gut mass. Int J Radiat Biol 2019; 95:1185-1193. [PMID: 30822251 DOI: 10.1080/09553002.2019.1589017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose: The main goal of this study was to analyze the long-term effects of static (SMF) and extremely low-frequency magnetic field (ELF MF) on nymphal gut mass and antioxidant biomarkers in this tissue of cockroach Blaptica dubia. Materials and methods: One-month-old nymphs were exposed to magnetic field (MF) for 5 months in three experimental groups: control, exposure to SMF (110 mT) and exposure to ELF MF (50 Hz, 10 mT). Results: The gut masses of the MF groups were significantly lower when compared to control. Superoxide dismutase (SOD) and catalase (CAT) activities were markedly higher than for the control and the differences between the MF groups were statistically significant only for SOD. The applied MF had no effect on total glutathione (GSH) content. Glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly lower in both MF groups in comparison to the control. There was a significant difference between MF groups for GR activity. Principal Component Analysis (PCA) showed that CAT and GST were the main factors contributing to the differentiation of the control group from the treated experimental groups along PCA 1, and SOD and GR along PCA 2. PCA revealed clear separation between experimental groups depends on antioxidant biomarker response. Conclusion: The applied magnetic fields could be considered a potential stressor influencing gut mass, as well as examined antioxidative biomarkers.
Collapse
Affiliation(s)
- Dajana Todorović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Larisa Ilijin
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Marija Mrdaković
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Milena Vlahović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Aleksandra Filipović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Anja Grčić
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Vesna Perić-Mataruga
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| |
Collapse
|
7
|
Impact of Static Magnetic Field on the Antioxidant Defence System of Mice Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5053608. [PMID: 29789797 PMCID: PMC5896275 DOI: 10.1155/2018/5053608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/25/2018] [Indexed: 12/18/2022]
Abstract
Results of research assessing the biological impact of static magnetic fields are controversial. So far, they have not provided a clear answer to their influence on cell functioning. Since the use of permanent magnets both in everyday life and in industry becomes more and more widespread, the investigations are continued in order to explain these controversies and to evaluate positive applications. The goal of current work was to assess the impact of static magnetic field of different intensities on redox homeostasis in cultures of fibroblasts. The use of permanent magnets allowed avoiding the thermal effects which are present in electromagnets. During the research we used 6 chambers, designed exclusively by us, with different values of field flux density (varying from 0.1 to 0.7 T). We have noted the decrease in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx). The static magnetic fields did not modify the energy state of fibroblasts— adenosine triphosphate (ATP) concentration was stable, as well as the generation of malondialdehyde (MDA)—which is a marker of oxidative stress. Results of research suggest that static magnetic fields generated by permanent magnets do not cause oxidative stress in investigated fibroblasts and that they may show slight antioxidizing activity.
Collapse
|
8
|
Maliszewska J, Marciniak P, Kletkiewicz H, Wyszkowska J, Nowakowska A, Rogalska J. Electromagnetic field exposure (50 Hz) impairs response to noxious heat in American cockroach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:605-611. [PMID: 29721708 PMCID: PMC5966488 DOI: 10.1007/s00359-018-1264-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 11/29/2022]
Abstract
Exposure to electromagnetic field (EMF) induces physiological changes in organism that are observed at different levels—from biochemical processes to behavior. In this study, we evaluated the effect of EMF exposure (50 Hz, 7 mT) on cockroach’s response to noxious heat, measured as the latency to escape from high ambient temperature. We also measured the levels of lipid peroxidation and glutathione content as markers of oxidative balance in cockroaches exposed to EMF. Our results showed that exposure to EMF for 24, 72 h and 7 days significantly increases the latency to escape from noxious heat. Malondialdehyde (MDA) levels increased significantly after 24-h EMF exposure and remained elevated up to 7 days of exposure. Glutathione levels significantly declined in cockroaches exposed to EMF for 7 days. These results demonstrate that EMF exposure is a considerable stress factor that affects oxidative state and heat perception in American cockroach.
Collapse
Affiliation(s)
- Justyna Maliszewska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland.
| | | | - Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Nowakowska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
9
|
Zmejkoski D, Petković B, Pavković-Lučić S, Prolić Z, Anđelković M, Savić T. Different responses of Drosophila subobscura isofemale lines to extremely low frequency magnetic field (50 Hz, 0.5 mT): fitness components and locomotor activity. Int J Radiat Biol 2016; 93:544-552. [PMID: 27921519 DOI: 10.1080/09553002.2017.1268281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Extremely low frequency (ELF) magnetic fields as essential ecological factors may induce specific responses in genetically different lines. The object of this study was to investigate the impact of the ELF magnetic field on fitness components and locomotor activity of five Drosophila subobscura isofemale (IF) lines. MATERIALS AND METHODS Each D. subobscura IF line, arbitrarily named: B16/1, B24/4, B39/1, B57/2 and B69/5, was maintained in five full-sib inbreeding generations. Their genetic structures were defined based on the mitochondrial DNA variability. Egg-first instar larvae and 1-day-old flies were exposed to an ELF magnetic field (50 Hz, 0.5 mT, 48 h) and thereafter, fitness components and locomotor activity of males and females in an open field test were observed for each selected IF line, respectively. RESULTS Exposure of egg-first instar larvae to an ELF magnetic field shortened developmental time, and did not affect the viability and sex ratio of D. subobscura IF lines. Exposure of 1-day-old males and females IF lines B16/1 and B24/4 to an ELF magnetic field significantly decreased their locomotor activity and this effect lasted longer in females than males. CONCLUSIONS These results indicate various responses of D. subobscura IF lines to the applied ELF magnetic field depending on their genetic background.
Collapse
Affiliation(s)
- Danica Zmejkoski
- a Laboratory of Materials Science, University of Belgrade, Vinča Institute of Nuclear Sciences , Belgrade , Serbia
| | - Branka Petković
- b Department of Neurophysiology, University of Belgrade, Institute for Biological Research , Belgrade , Serbia
| | - Sofija Pavković-Lučić
- c Chair of Genetics and Evolution, Faculty of Biology , University of Belgrade , Belgrade , Serbia
| | - Zlatko Prolić
- d Department of Insect Physiology and Biochemistry , University of Belgrade, Institute for Biological Research , Belgrade , Serbia
| | - Marko Anđelković
- c Chair of Genetics and Evolution, Faculty of Biology , University of Belgrade , Belgrade , Serbia.,e Department of Chemical and Biological Sciences , Serbian Academy of Sciences and Arts , Belgrade , Serbia.,f Department of Genetics of Populations and Ecogenotoxicology , University of Belgrade, Institute for Biological Research , Belgrade , Serbia
| | - Tatjana Savić
- f Department of Genetics of Populations and Ecogenotoxicology , University of Belgrade, Institute for Biological Research , Belgrade , Serbia
| |
Collapse
|
10
|
Todorović D, Perić-Mataruga V, Mirčić D, Ristić-Djurović J, Prolić Z, Petković B, Savić T. Estimation of changes in fitness components and antioxidant defense of Drosophila subobscura (Insecta, Diptera) after exposure to 2.4 T strong static magnetic field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5305-5314. [PMID: 25475617 DOI: 10.1007/s11356-014-3910-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
As an ecological factor, a magnetic field can affect insects causing a wide range of responses. The main purpose of this study was to analyze the fitness components (postembryonic development and viability of individuals) and the antioxidant defense (superoxide dismutase, catalase, and total glutathione) in laboratory strains of Drosophila subobscura, originating from oak and beech forests after exposure to the strong static magnet (2.4 T, VINCY Cyclotron magnet). The first instar larvae were placed near the north pole (N group) or the south pole (S group) of the magnet for 2 h. Oak and beech populations of D. subobscura had longer development time and lower viability in N and S groups compared to controls. These differences were significant only in S group of oak population and in N group of beech population. Total glutathione content was significantly decreased in both exposed groups of oak population, while catalase activity was significantly increased in both exposed groups of beech population. Being significantly decreased in both exposed groups of oak population and significantly increased in S group of beech population in comparison to controls, superoxide dismutase activity was observed in different values. According to the results, it can be stated that applied static magnetic field could be considered a potential stressor influencing the fitness components and antioxidant defense in Drosophila flies.
Collapse
Affiliation(s)
- Dajana Todorović
- Institute for Biological Research, University of Belgrade, 142 Despota Stefana Blvd., Belgrade, 11060, Serbia,
| | | | | | | | | | | | | |
Collapse
|
11
|
Todorović D, Prolić Z, Petković B, Kalauzi A. Effects of two different waveforms of ELF MF on bioelectrical activity of antennal lobe neurons of Morimus funereus (Insecta, Coleoptera). Int J Radiat Biol 2015; 91:435-42. [PMID: 25585816 DOI: 10.3109/09553002.2015.1004467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE External magnetic fields (MF) interact with organisms at all levels, including the nervous system. Bioelectrical activity of antennal lobe neurons of adult Morimus funereus was analyzed under the influence of extremely low frequency MF (ELF MF, 50 Hz, 2 mT) of different characteristics (exposure duration and waveform). MATERIAL AND METHODS Neuronal activity (background/neuronal population and those nearest to the recording electrode) in adult longhorn beetles was registered through several phases of exposure to the sine wave and square wave MF for 5, 10 and 15 min. RESULTS The sine wave MF, regardless of the exposure duration, did not change the reversibility factor of antennal lobe neuronal activity in adult M. funereus. In contrast, reversibility factors of the nearest neurons were significantly changed after the exposure to square wave MF for 10 and 15 min. CONCLUSION M. funereus individuals are sensitive to both sine wave and square wave ELF MF (50 Hz, 2 mT) of different duration, whereby their reactions depend on the characteristics of the applied MF and specificity of each individual.
Collapse
Affiliation(s)
- Dajana Todorović
- Institute for Biological Research, University of Belgrade , Belgrade , Serbia
| | | | | | | |
Collapse
|
12
|
Wan GJ, Jiang SL, Zhao ZC, Xu JJ, Tao XR, Sword GA, Gao YB, Pan WD, Chen FJ. Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:7-15. [PMID: 24995837 DOI: 10.1016/j.jinsphys.2014.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/04/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Magnetic fields markedly affect the growth and development of many species of organisms potentially due to cryptochrome and endogenous presence of magnetic materials. Sensitivity to magnetic fields can also be involved in geomagnetic orientation by some long-distance migratory insects. In this study, near-zero magnetic fields (NZMF) in relation to normal geomagnetic fields (GMF) were setup using the Hypomagnetic Field Space System (HMFs) to investigate the effects of magnetic fields on the growth, development and reproduction of two species of migratory planthopper, the small brown planthopper (abbr. SBPH), Laodelphax striatellus, and the brown planthopper (abbr. BPH), Nilaparvata lugens. Exposure of both L. striatellus and N. lugens to NZMF delayed egg and nymphal developmental durations and decreased adult weight and female fecundity. The 1st-5th instars of SBPH and BPH showed different responses to NZMF. The 4th instar was significantly affected by NZMF, especially for BPH males, in which NZMF exposure reduced the difference in development duration between females and males. Compared with GMF, the vitellogenin transcript levels of newly molted female adults and the number of eggs per female were significantly reduced in both planthopper species, indicating a negative effect on fertility under NZMF. Our findings provided experimental evidence that NZMF negatively affected the growth and development of SBPH and BPH, with particularly strong effects on reproduction.
Collapse
Affiliation(s)
- Gui-jun Wan
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shou-lin Jiang
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-chao Zhao
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-jing Xu
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-rong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Yue-bo Gao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Wei-dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fa-jun Chen
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Effect of a static magnetic fields and fluoride ions on the antioxidant defense system of mice fibroblasts. Int J Mol Sci 2013; 14:15017-28. [PMID: 23873295 PMCID: PMC3742285 DOI: 10.3390/ijms140715017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/18/2022] Open
Abstract
The results of studies on the biological influence of magnetic fields are controversial and do not provide clear answers regarding their impact on cell functioning. Fluoride compounds are substances that influence free radical processes, which occur when the reactive forms of oxygen are present. It is not known whether static magnetic fields (SMF) cause any changes in fluoride assimilation or activity. Therefore, the aim of this work was to determine the potential relationship between magnetic field exposure to, and the antioxidant system of, fibroblasts cultured with fluoride ions. Three chambers with static magnetic fields of different intensities (0.4, 0.6, and 0.7 T) were used in this work. Fluoride ions were added at a concentration of 0.12 mM, which did not cause the precipitation of calcium or magnesium. The results of this study show that static magnetic fields reduce the oxidative stress caused by fluoride ions and normalize the activities of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Static magnetic fields modify the energy state of fibroblasts, causing an increase in the ATP concentration and a decrease in the MDA concentration. These results suggest that exposure to fluoride and an SMF improves the tolerance of cells to the oxidative stress induced by fluoride ions.
Collapse
|