1
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
López I, Rivera M, Félix N, Maestú C. It is mandatory to review environmental radiofrequency electromagnetic field measurement protocols and exposure regulations: An opinion article. Front Public Health 2022; 10:992645. [PMID: 36353271 PMCID: PMC9639819 DOI: 10.3389/fpubh.2022.992645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 01/26/2023] Open
Affiliation(s)
- Isabel López
- Departamento de Fotónica y Bioingeniería (TFB), Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marco Rivera
- Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nazario Félix
- Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Arquitectura y Tecnología de Sistemas Informáticos (DATSI), Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ceferino Maestú
- Departamento de Fotónica y Bioingeniería (TFB), Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain,CIBER–BBN Centro de Investigación Biomédica en Red, Madrid, Spain,*Correspondence: Ceferino Maestú
| |
Collapse
|
3
|
The use of the electromagnetic field in microbial process bioengineering. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:27-72. [PMID: 36328731 DOI: 10.1016/bs.aambs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.
Collapse
|
4
|
Electromagnetic Fields Change the Expression of Suppressor of Cytokine Signaling 3 (SOCS3) and Cathepsin L2 (CTSL2) Genes in Adenocarcinoma Gastric (AGS) Cell Line. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Gastric cancer is one of the most prevalent and deadliest cancers in the world. Environmental factors including chemicals, sunlight, and electromagnetic fields can induce changes in gene expression. Though the resizing mechanism of its effect has not been fully recognized, free radicals are seen as the possible mechanism involved. Although low-frequency electromagnetic fields are not considered a carcinogenic factor, some studies have shown disruption in deoxyribonucleic acid (DNA) and gene expression in different cell categories. Objectives: This study was intendant to examine the effects of low-frequency electromagnetic flux densities of 0.2 and 2 mT on the expression of cathepsin L2 (CTSL2) and suppressor of cytokine signaling 3 (SOCS3) genes in adenocarcinoma gastric (AGS) cell lines. Methods: The AGS cell line was cultured in Hamas12 and was exposed to electromagnetic fields continuously and discontinuously for 18 hours. Moreover, Cell viability was assessed by the MTT (3-(4, 5-Dimethylthiazol-2-yl)) assay. The change in the expression of genes was measured by real-time polymerase chain reaction (PCR). Results: Low-frequency electromagnetic fields increased gene expression compared to the control group. The changes in the expression are directly associated with the electromagnetic field strength. Expression levels of CTSL2 were increased under the exposure of electromagnetic fields and this increase was significant when discontinuous exposure was applied (33.26 ± 7.4 fold change for 0.2mT and 64.4 ± 7.7 for 2mT, p- value
Collapse
|
5
|
Bereta M, Teplan M, Chafai DE, Radil R, Cifra M. Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Sci Rep 2021; 11:328. [PMID: 33431983 PMCID: PMC7801494 DOI: 10.1038/s41598-020-79668-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Normal or excessive oxidative metabolism in organisms is essential in physiological and pathophysiological processes, respectively. Therefore, monitoring of biological oxidative processes induced by the chemical or physical stimuli is nowadays of extreme importance due to the environment overloaded with various physicochemical factors. Current techniques typically require the addition of chemical labels or light illumination, which perturb the samples to be analyzed. Moreover, the current techniques are very demanding in terms of sample preparation and equipment. To alleviate these limitations, we propose a label-free monitoring tool of oxidation based on biological autoluminescence (BAL). We demonstrate this tool on Saccharomyces cerevisiae cell culture. We showed that BAL can be used to monitor chemical perturbation of yeast due to Fenton reagents initiated oxidation-the BAL intensity changes with hydrogen peroxide concentration in a dose-dependent manner. Furthermore, we also showed that BAL reflects the effects of low-frequency magnetic field on the yeast cell culture, where we observed a disturbance of the BAL kinetics in the exposed vs. control case. Our results contribute to the development of novel techniques for label-free, real-time, noninvasive monitoring of oxidative processes and approaches for their modulation.
Collapse
Affiliation(s)
- Martin Bereta
- Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Health, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | - Michal Teplan
- Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Djamel Eddine Chafai
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Roman Radil
- Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
6
|
Li Q, Tian M, Teng J, Gao P, Tang BQ, Wu H. Radio frequency-induced superoxide accumulation affected the growth and viability of Saccharomyces cerevisiae. Int Microbiol 2020; 23:391-396. [PMID: 31898034 DOI: 10.1007/s10123-019-00111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022]
Abstract
With the development of the electric technologies, the biological effects of electromagnetic fields (EMF) were widely studied. However, the results remain controversial and the biophysical mechanisms are still unknown. To our knowledge, little studies pay attention to the radio frequency (RF) of 2.6-5 MHz. In the present study, we investigated the effect of these radio frequencies on the growth and cell viability of Saccharomyces cerevisiae at very low power density below 0.1 mT. The result appeared to be time-dependent. The growth of the yeast cells was obviously affected by the RF-EMF with a 43.5% increase when exposed for 30 h, and the growth-promoting effect decreased along with the radiation time and eventually turned to an inhibiting effect retarding growth by 20.7% at 89 h. The cell viability was improved to 70.1% at 8 h and reduced by 33.5% at 28 h. The superoxide accumulated in exposed cells as radiation time increased which may lead to the inhibition of viability and growth of the cells. However, the efficient frequency, power density, and exposure dosage await further investigation. Nevertheless, the wave band studied in this research is effective to produce biological effect, and therefore, it may provide an optional new radio frequency which is valuable for the development and utilization in therapy technique and medical use.
Collapse
Affiliation(s)
- Qing Li
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Miao Tian
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Jie Teng
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Peng Gao
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Bruce Qing Tang
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Hong Wu
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China.
| |
Collapse
|
7
|
Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes (Basel) 2019; 10:genes10060479. [PMID: 31242701 PMCID: PMC6627294 DOI: 10.3390/genes10060479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the use of systems biology in understanding the biological effects of electromagnetic fields, with particular focus on induction of genomic instability and cancer. We introduce basic concepts of the dynamical systems theory such as the state space and attractors and the use of these concepts in understanding the behavior of complex biological systems. We then discuss genomic instability in the framework of the dynamical systems theory, and describe the hypothesis that environmentally induced genomic instability corresponds to abnormal attractor states; large enough environmental perturbations can force the biological system to leave normal evolutionarily optimized attractors (corresponding to normal cell phenotypes) and migrate to less stable variant attractors. We discuss experimental approaches that can be coupled with theoretical systems biology such as testable predictions, derived from the theory and experimental methods, that can be used for measuring the state of the complex biological system. We also review potentially informative studies and make recommendations for further studies.
Collapse
|
8
|
Sun L, Li X, Ma H, He R, Donkor PO. Global gene expression changes reflecting pleiotropic effects of Irpex lacteus
induced by low-intensity electromagnetic field. Bioelectromagnetics 2019; 40:104-117. [DOI: 10.1002/bem.22171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Ling Sun
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Xinyi Li
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Prince O. Donkor
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| |
Collapse
|
9
|
Consales C, Panatta M, Butera A, Filomeni G, Merla C, Carrì MT, Marino C, Benassi B. 50-Hz magnetic field impairs the expression of iron-related genes in the in vitro SOD1 G93A model of amyotrophic lateral sclerosis. Int J Radiat Biol 2019; 95:368-377. [PMID: 30513241 DOI: 10.1080/09553002.2019.1552378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE We characterized the response to the extremely low frequency magnetic field (ELF-MF) in an in vitro model of familial Amyotrophic Lateral Sclerosis (fALS), carrying two mutant variants of the superoxide dismutase 1 (SOD1) gene. MATERIALS AND METHODS SH-SY5Y human neuroblastoma cells, stably over-expressing the wild type, the G93A or the H46R mutant SOD1 cDNA, were exposed to either the ELF-MF (50 Hz, 1 mT) or the sham control field, up to 72 h. Analysis of (i) viability, proliferation and apoptosis, (ii) reactive oxygen species generation, and (iii) assessment of the iron metabolism, were carried out in all clones in response to the MF exposure. RESULTS We report that 50-Hz MF exposure induces: (i) no change in proliferation and viability; (ii) no modulation of the intracellular superoxide and H2O2 levels; (iii) a significant deregulation in the expression of iron-related genes IRP1, MFRN1 and TfR1, this evidence being exclusive for the SOD1G93A clone and associated with a slight (p = .0512) difference in the total iron content. CONCLUSIONS 50-Hz MF affects iron homeostasis in the in vitro SOD1G93A ALS model.
Collapse
Affiliation(s)
- Claudia Consales
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Martina Panatta
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy.,b Department of Chemistry and Biochemistry , University of Bern , Bern , Switzerland
| | - Alessio Butera
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Giuseppe Filomeni
- c Department of Biology , University of Rome Tor Vergata , Rome , Italy.,d Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD) , Danish Cancer Society Research Center , Copenhagen , Denmark
| | - Caterina Merla
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | | | - Carmela Marino
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Barbara Benassi
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| |
Collapse
|
10
|
Sun C, Wei X, Yimaer A, Xu Z, Chen G. Ataxia telangiectasia mutated deficiency does not result in genetic susceptibility to 50 Hz magnetic fields exposure in mouse embryonic fibroblasts. Bioelectromagnetics 2018; 39:476-484. [PMID: 30091795 DOI: 10.1002/bem.22140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
Abstract
Extremely low frequency magnetic field (ELF-MF) has been classified as a possible carcinogen to humans by the International Agency for Research on Cancer [2002]. However, debate on the genotoxic effects of ELF-MF has continued due to lack of sufficient experimental evidence. Ataxia telangiectasia mutated (ATM) plays a central role in DNA damage repair; its deficiency can result in cellular sensitivity to DNA-damaging agents. To evaluate the genotoxicity of ELF-MF, we investigated the effects of 50 Hz MF on DNA damage in ATM-proficient (Atm+/+ ) mouse embryonic fibroblasts (MEFs) and ATM-deficient (Atm-/- ) MEFs, a radiosensitive cell line. Results showed no significant difference in average number of γH2AX foci per cell (9.37 ± 0.44 vs. 9.08 ± 0.28, P = 0.58) or percentage of γH2AX foci positive cells (49.22 ± 1.86% vs. 49.74 ± 1.44%, P = 0.83) between sham and exposure groups when Atm+/+ MEFs were exposed to 50 Hz MF at 2.0 mT for 15 min. Extending exposure duration to 1 or 24 h did not significantly change γH2AX foci formation in Atm+/+ MEFs. Similarly, the exposure did not significantly affect γH2AX foci formation in Atm-/- MEFs. Furthermore, 50 Hz MF exposure also did not significantly influence DNA fragmentation, cell viability, or cell cycle progression in either cell types. In conclusion, exposure to 50 Hz MF did not induce significant DNA damage in either Atm+/+ or Atm-/- MEFs under the reported experimental conditions. Bioelectromagnetics. 39:476-484, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chuan Sun
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Aziguli Yimaer
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China
| |
Collapse
|
11
|
Voychuk SI, Zelena LB, Gromozova EN, Pidgorskyi VS, Dumansky VY, Bezverkhaya AP. Possible role of polyphosphatases in yeast sensitivity to DCS-1800 electromagnetic fields. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717040120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Madjid Ansari A, Majidzadeh-A K, Darvishi B, Sanati H, Farahmand L, Norouzian D. Extremely low frequency magnetic field enhances glucose oxidase expression in Pichia pastoris GS115. Enzyme Microb Technol 2017; 98:67-75. [DOI: 10.1016/j.enzmictec.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/31/2016] [Accepted: 12/31/2016] [Indexed: 01/26/2023]
|
13
|
Kuzniar A, Laffeber C, Eppink B, Bezstarosti K, Dekkers D, Woelders H, Zwamborn APM, Demmers J, Lebbink JHG, Kanaar R. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields. PLoS One 2017; 12:e0170762. [PMID: 28234898 PMCID: PMC5325209 DOI: 10.1371/journal.pone.0170762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.
Collapse
Affiliation(s)
- Arnold Kuzniar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands eScience Center, Amsterdam, The Netherlands
- * E-mail: (RK); (AK)
| | - Charlie Laffeber
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Berina Eppink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen, The Netherlands
| | | | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands Proteomics Center, Rotterdam, The Netherlands
| | - Joyce H. G. Lebbink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail: (RK); (AK)
| |
Collapse
|
14
|
Lin KW, Yang CJ, Lian HY, Cai P. Exposure of ELF-EMF and RF-EMF Increase the Rate of Glucose Transport and TCA Cycle in Budding Yeast. Front Microbiol 2016; 7:1378. [PMID: 27630630 PMCID: PMC5005349 DOI: 10.3389/fmicb.2016.01378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated the transcriptional response to 50 Hz extremely low frequency electromagnetic field (ELF-EMF) and 2.0 GHz radio frequency electromagnetic field (RF-EMF) exposure by Illumina sequencing technology using budding yeast as the model organism. The transcription levels of 28 genes were upregulated and those of four genes were downregulated under ELF-EMF exposure, while the transcription levels of 29 genes were upregulated and those of 24 genes were downregulated under RF-EMF exposure. After validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR), a concordant direction of change both in differential gene expression (DGE) and RT-qPCR was demonstrated for nine genes under ELF-EMF exposure and for 10 genes under RF-EMF exposure. The RT-qPCR results revealed that ELF-EMF and RF-EMF exposure can upregulate the expression of genes involved in glucose transportation and the tricarboxylic acid (TCA) cycle, but not the glycolysis pathway. Energy metabolism is closely related with the cell response to environmental stress including EMF exposure. Our findings may throw light on the mechanism underlying the biological effects of EMF.
Collapse
Affiliation(s)
- Kang-Wei Lin
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of SciencesXiamen, China; College of Resources and Environment, University of the Chinese Academy of SciencesBeijing, China
| | - Chuan-Jun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Hui-Yong Lian
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| |
Collapse
|
15
|
Schmid G, Kuster N. The discrepancy between maximum in vitro exposure levels and realistic conservative exposure levels of mobile phones operating at 900/1800 MHz. Bioelectromagnetics 2015; 36:133-48. [DOI: 10.1002/bem.21895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS); Zurich Switzerland
- Swiss Federal Institute of Technology (ETH); Zurich Switzerland
| |
Collapse
|
16
|
Huang CY, Chang CW, Chen CR, Chuang CY, Chiang CS, Shu WY, Fan TC, Hsu IC. Extremely low-frequency electromagnetic fields cause G1 phase arrest through the activation of the ATM-Chk2-p21 pathway. PLoS One 2014; 9:e104732. [PMID: 25111195 PMCID: PMC4128733 DOI: 10.1371/journal.pone.0104732] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/11/2014] [Indexed: 12/20/2022] Open
Abstract
In daily life, humans are exposed to the extremely low-frequency electromagnetic fields (ELF-EMFs) generated by electric appliances, and public concern is increasing regarding the biological effects of such exposure. Numerous studies have yielded inconsistent results regarding the biological effects of ELF-EMF exposure. Here we show that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, inhibiting cell proliferation. To present well-founded results, we comprehensively evaluated the biological effects of ELF-EMFs at the transcriptional, protein, and cellular levels. Human HaCaT cells from an immortalized epidermal keratinocyte cell line were exposed to a 1.5 mT, 60 Hz ELF-EMF for 144 h. The ELF-EMF could cause G1 arrest and decrease colony formation. Protein expression experiments revealed that ELF-EMFs induced the activation of the ATM/Chk2 signaling cascades. In addition, the p21 protein, a regulator of cell cycle progression at G1 and G2/M, exhibited a higher level of expression in exposed HaCaT cells compared with the expression of sham-exposed cells. The ELF-EMF-induced G1 arrest was diminished when the CHK2 gene expression (which encodes checkpoint kinase 2; Chk2) was suppressed by specific small interfering RNA (siRNA). These findings indicate that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, resulting in cell cycle arrest at the G1 phase. Based on the precise control of the ELF-EMF exposure and rigorous sham-exposure experiments, all transcriptional, protein, and cellular level experiments consistently supported the conclusion. This is the first study to confirm that a specific pathway is triggered by ELF-EMF exposure.
Collapse
Affiliation(s)
- Chao-Ying Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-Wei Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chaang-Ray Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wun-Yi Shu
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan
| | - Tai-Ching Fan
- Magnet Group, Instrumentation Development Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ian C. Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Isaac Alemán E, Oliveira Moreira R, Almeida Lima A, Chaves Silva S, González-Olmedo JL, Chalfun-Junior A. Effects of 60 Hz sinusoidal magnetic field on in vitro establishment, multiplication, and acclimatization phases ofCoffea arabicaseedlings. Bioelectromagnetics 2014; 35:414-25. [DOI: 10.1002/bem.21859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/18/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Elizabeth Isaac Alemán
- Bioelectromagnetism Department; National Center of Applied Electromagnetism; Santiago de Cuba Cuba
| | - Rafael Oliveira Moreira
- Biology Department; Plant Molecular and Physiology Laboratory; Federal University of Lavras; Minas Gerais Brazil
| | - Andre Almeida Lima
- Biology Department; Plant Molecular and Physiology Laboratory; Federal University of Lavras; Minas Gerais Brazil
| | - Samuel Chaves Silva
- Biology Department; Plant Molecular and Physiology Laboratory; Federal University of Lavras; Minas Gerais Brazil
| | | | - Antonio Chalfun-Junior
- Biology Department; Plant Molecular and Physiology Laboratory; Federal University of Lavras; Minas Gerais Brazil
| |
Collapse
|
18
|
Makarov VI, Khmelinskii I. Modulation effect of low-frequency electric and magnetic fields on CO2 production and rates of acetate and pyruvate formation in Saccharomyces cerevisiae cell culture. Electromagn Biol Med 2014; 34:93-104. [PMID: 24694348 DOI: 10.3109/15368378.2014.902382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We studied action of one-dimensional, two-dimensional and three-dimensional low-frequency oscillating electric and magnetic fields on sugar metabolism in Saccharomyces cerevisiae cell culture. S. cerevisiae cells were grown on a minimal medium containing glucose (10%) as a carbon source and salts (0.3-0.5%) that supplied nitrogen, phosphorus and trace metals. We found that appropriate three-dimensional field patterns can either accelerate or inhibit sugar metabolism in yeast cells, as compared to control experiments. We also studied aerobic sugar metabolism, with similar results. Sugar metabolism was monitored by formation of pyruvate, acetate and CO2. We found that for the P1 parameter set the cell metabolism accelerates as evaluated by all of the monitored chemical products, and the cell density growth rate also accelerates, with opposite effects observed for the P2 parameter set. These parameter sets are introduced using D, ω, φ, B, ω', and φ' - vectors defining amplitudes, frequencies and phases of periodic electric and magnetic fields, respectively. Thus, the P1 parameter set: D = (2.6, 3.1, 2.2) V/cm; ω = (0.8, 1.6, 0.2) kHz; φ = (1.31, 0.9, 1.0) rad; B = (3.1, 7.2, 7.2) × 10(-4) T; ω' = (2.1, 1.3, 3.1) kHz; φ' = (0.4, 2.1, 2.8) rad; and the P2 parameter set: D = (4.3, 1.6, 3.8) V/cm; ω = (3.3, 1.8, 2.8) kHz; φ = (0.86, 1.1, 0.4) rad; B = (5.4, 1.3, 1.3) × 10(-4) T; ω' = (1.3, 1.7, 0.9) kHz; φ' = (2.6, 1.7, 1.7) rad. The effects obtained for the less complex field combinations that used one-dimensional or two-dimensional configurations, or omitted either the electric or the magnetic contribution, were significantly weaker than those obtained for the complete P1 and P2 parameter sets.
Collapse
|
19
|
Novickij V, Grainys A, Švedienė J, Markovskaja S, Paškevičius A, Novickij J. Microsecond pulsed magnetic field improves efficacy of antifungal agents on pathogenic microorganisms. Bioelectromagnetics 2014; 35:347-53. [DOI: 10.1002/bem.21848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/28/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Vitalij Novickij
- High Magnetic Field Laboratory; Vilnius Gediminas Technical University; Vilnius Lithuania
| | - Audrius Grainys
- High Magnetic Field Laboratory; Vilnius Gediminas Technical University; Vilnius Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research; Institute of Botany of Nature Research Centre; Vilnius Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology; Institute of Botany of Nature Research Centre; Vilnius Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research; Institute of Botany of Nature Research Centre; Vilnius Lithuania
| | - Jurij Novickij
- High Magnetic Field Laboratory; Vilnius Gediminas Technical University; Vilnius Lithuania
| |
Collapse
|
20
|
Cucurachi S, Tamis WLM, Vijver MG, Peijnenburg WJGM, Bolte JFB, de Snoo GR. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). ENVIRONMENT INTERNATIONAL 2013; 51:116-140. [PMID: 23261519 DOI: 10.1016/j.envint.2012.10.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE This article presents a systematic review of published scientific studies on the potential ecological effects of radiofrequency electromagnetic fields (RF-EMF) in the range of 10 MHz to 3.6 GHz (from amplitude modulation, AM, to lower band microwave, MW, EMF). METHODS Publications in English were searched in ISI Web of Knowledge and Scholar Google with no restriction on publication date. Five species groups were identified: birds, insects, other vertebrates, other organisms, and plants. Not only clear ecological articles, such as field studies, were taken into consideration, but also biological articles on laboratory studies investigating the effects of RF-EMF with biological endpoints such as fertility, reproduction, behaviour and development, which have a clear ecological significance, were also included. RESULTS Information was collected from 113 studies from original peer-reviewed publications or from relevant existing reviews. A limited amount of ecological field studies was identified. The majority of the studies were conducted in a laboratory setting on birds (embryos or eggs), small rodents and plants. In 65% of the studies, ecological effects of RF-EMF (50% of the animal studies and about 75% of the plant studies) were found both at high as well as at low dosages. No clear dose-effect relationship could be discerned. Studies finding an effect applied higher durations of exposure and focused more on the GSM frequency ranges. CONCLUSIONS In about two third of the reviewed studies ecological effects of RF-EMF was reported at high as well as at low dosages. The very low dosages are compatible with real field situations, and could be found under environmental conditions. However, a lack of standardisation and a limited number of observations limit the possibility of generalising results from an organism to an ecosystem level. We propose in future studies to conduct more repetitions of observations and explicitly use the available standards for reporting RF-EMF relevant physical parameters in both laboratory and field studies.
Collapse
Affiliation(s)
- S Cucurachi
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|