1
|
Wang A, Ma X, Bian J, Jiao Z, Zhu Q, Wang P, Zhao Y. Signalling pathways underlying pulsed electromagnetic fields in bone repair. Front Bioeng Biotechnol 2024; 12:1333566. [PMID: 38328443 PMCID: PMC10847561 DOI: 10.3389/fbioe.2024.1333566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Pulsed electromagnetic field (PEMF) stimulation is a prospective non-invasive and safe physical therapy strategy for accelerating bone repair. PEMFs can activate signalling pathways, modulate ion channels, and regulate the expression of bone-related genes to enhance osteoblast activity and promote the regeneration of neural and vascular tissues, thereby accelerating bone formation during bone repair. Although their mechanisms of action remain unclear, recent studies provide ample evidence of the effects of PEMF on bone repair. In this review, we present the progress of research exploring the effects of PEMF on bone repair and systematically elucidate the mechanisms involved in PEMF-induced bone repair. Additionally, the potential clinical significance of PEMF therapy in fracture healing is underscored. Thus, this review seeks to provide a sufficient theoretical basis for the application of PEMFs in bone repair.
Collapse
Affiliation(s)
- Aoao Wang
- Medical School of Chinese PLA, Beijing, China
| | - Xinbo Ma
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Jiaqi Bian
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | | | - Qiuyi Zhu
- Medical School of Chinese PLA, Beijing, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Zhao
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Wu Y, Wu J, Huang X, Zhu X, Zhi W, Wang J, Sun D, Chen X, Zhu X, Zhang X. Accelerated osteogenesis of bone graft by optimizing the bone microenvironment formed by electrical signals dependent on driving micro vibration stimulation. Mater Today Bio 2023; 23:100891. [PMID: 38149016 PMCID: PMC10750112 DOI: 10.1016/j.mtbio.2023.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
The strategy of coupling the micro-vibration mechanical field with Ca/P ceramics to optimize the osteogenic microenvironment and enhance the functional activity of the cells can significantly improve the bone regeneration of the graft. However, the regulation mode and mechanism of this coupling strategy are not fully understood at present. This study investigated the influence of different waveforms of the electrical signals driving Microvibration Stimulation (MVS) on this coupling effect. The results showed that there were notable variances in calcium phosphate dissolution and redeposition, protein adsorption, phosphorylation of ERK1/2 and FAK signal pathways and activation of calcium channels such as TRPV1/Piezo1/Piezo2 in osteogenic microenvironment under the coupling action of hydroxyapatite (HA) ceramics and MVS driven by different electrical signal waveforms. Ultimately, these differences affected the osteogenic differentiation process of cells by a way of time-sequential regulation. Square wave-MVS coupled with HA ceramic can significantly delay the high expression time of characteristic genes (such as Runx2, Col-I and OCN) in MC3T3-E1 cells during in vitro the early, middle and late stage of differentiation, while maintain the high proliferative activity of MC3T3-E1 cells. Triangle wave signal-MVS coupled with HA ceramic promoted the osteogenic differentiation of cells in the early and late stages. Sine wave-MVS shows the effect on the process of osteogenic differentiation in the middle stage (such as the up-regulation of ALP synthesis and Col-I gene expression in the early stage of stimulation). In addition, Square wave-MVS showed the best coupling effect. The bone graft constructed under square wave-MVS formed new bone tissue and mature blood vessels only 2 weeks after subcutaneous implantation in nude mice. Our study provides a new non-invasive regulation model for precisely optimizing the osteogenic microenvironment, which can accelerate bone regeneration in bone grafts more safely, accurately and reliably.
Collapse
Affiliation(s)
- Yuehao Wu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinjie Wu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xu Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiupeng Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Zhi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Gaotanyan No.30, 400038, Chongqing, China
| | - Xuening Chen
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| | - Xiangdong Zhu
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| | - Xingdong Zhang
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| |
Collapse
|
3
|
Askaripour K, Żak A. A mechanistically approached review upon assorted cell lines stimulated by athermal electromagnetic irradiation. Cell Cycle 2023; 22:1319-1342. [PMID: 37144743 PMCID: PMC10228405 DOI: 10.1080/15384101.2023.2206682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 05/06/2023] Open
Abstract
The probable influence of electromagnetic irradiation on cancer treatment has been deduced from the interaction of artificial electromagnetic emissions with biological organisms. Nonetheless, the suspected health effects induced by electromagnetic-based technology imply that such a treatment may contaminate the adjacent healthy cells. Thus, gaining mechanistic insights into the problem is required to avoid athermal health hazards. To tackle that, the current review, based upon in vitro studies into assorted cell lines, depicts the alterations in physiological processes triggered by electromagnetic irradiation via addressing gene regulatory cascades. Furthermore, decisive factors in the hypothesized cause-effect linkage in terms of the cell line-associated, exposure-associated, or endpoint-associated parameters are highlighted. As a result, subcellular structures such as aberrant Ca2+ channels, rich glycocalyx charge, or high water content in cancerous cells, which have attracted a great deal of attention, can explain their higher susceptibility compared with healthy cells under irradiation. Affected by cell components or geometry, the cellular biological window correlates with the metabolic or cell cycle status and determines the irradiation that causes the maximum influence. For instance, correlations between the frequency (or intensity) of irradiation and cell excitability or between the duration of irradiation and cell doubling time are observed. There are unspecified signaling pathways such as the pathway of PPAR-γ or MAPKs, and also proteins devoid of any investigation such as p14, or S phase-related and G2 phase-related proteins. Other chains, such as the cAMP connection with mitochondrial ATP or ERK signaling, the association of Hsps releases with signaling pathways of MAPKs, or the role of different ion channels in regulating various cell processes, require further investigation.
Collapse
Affiliation(s)
- Khadijeh Askaripour
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Poland
| | - Arkadiusz Żak
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
4
|
Gabetti S, Masante B, Cochis A, Putame G, Sanginario A, Armando I, Fiume E, Scalia AC, Daou F, Baino F, Salati S, Morbiducci U, Rimondini L, Bignardi C, Massai D. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci Rep 2022; 12:13859. [PMID: 35974079 PMCID: PMC9381575 DOI: 10.1038/s41598-022-18075-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.
Collapse
Affiliation(s)
- Stefano Gabetti
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Beatrice Masante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Cochis
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ileana Armando
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Alessandro Calogero Scalia
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Farah Daou
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Lia Rimondini
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy.
| |
Collapse
|
5
|
Electrical Stimulation and Cellular Behaviors in Electric Field in Biomedical Research. MATERIALS 2021; 15:ma15010165. [PMID: 35009311 PMCID: PMC8746014 DOI: 10.3390/ma15010165] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Research on the cellular response to electrical stimulation (ES) and its mechanisms focusing on potential clinic applications has been quietly intensified recently. However, the unconventional nature of this methodology has fertilized a great variety of techniques that make the interpretation and comparison of experimental outcomes complicated. This work reviews more than a hundred publications identified mostly from Medline, categorizes the techniques, and comments on their merits and weaknesses. Electrode-based ES, conductive substrate-mediated ES, and noninvasive stimulation are the three principal categories used in biomedical research and clinic. ES has been found to enhance cell proliferation, growth, migration, and stem cell differentiation, showing an important potential in manipulating cellular activities in both normal and pathological conditions. However, inappropriate parameters or setup can have negative effects. The complexity of the delivered electric signals depends on how they are generated and in what form. It is also difficult to equate one set of parameters with another. Mechanistic studies are rare and badly needed. Even so, ES in combination with advanced materials and nanotechnology is developing a strong footing in biomedical research and regenerative medicine.
Collapse
|
6
|
Modulation of Macrophage Activity by Pulsed Electromagnetic Fields in the Context of Fracture Healing. Bioengineering (Basel) 2021; 8:bioengineering8110167. [PMID: 34821733 PMCID: PMC8615107 DOI: 10.3390/bioengineering8110167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
Delayed fracture healing and fracture non-unions impose an enormous burden on individuals and society. Successful healing requires tight communication between immune cells and bone cells. Macrophages can be found in all healing phases. Due to their high plasticity and long life span, they represent good target cells for modulation. In the past, extremely low frequency pulsed electromagnet fields (ELF-PEMFs) have been shown to exert cell-specific effects depending on the field conditions. Thus, the aim was to identify the specific ELF-PEMFs able to modulate macrophage activity to indirectly promote mesenchymal stem/stromal cell (SCP-1 cells) function. After a blinded screening of 22 different ELF-PEMF, two fields (termed A and B) were further characterized as they diversely affected macrophage function. These two fields have similar fundamental frequencies (51.8 Hz and 52.3 Hz) but are emitted in different groups of pulses or rather send-pause intervals. Macrophages exposed to field A showed a pro-inflammatory function, represented by increased levels of phospho-Stat1 and CD86, the accumulation of ROS, and increased secretion of pro-inflammatory cytokines. In contrast, macrophages exposed to field B showed anti-inflammatory and pro-healing functions, represented by increased levels of Arginase I, increased secretion of anti-inflammatory cytokines, and growth factors are known to induce healing processes. The conditioned medium from macrophages exposed to both ELF-PEMFs favored the migration of SCP-1 cells, but the effect was stronger for field B. Furthermore, the conditioned medium from macrophages exposed to field B, but not to field A, stimulated the expression of extracellular matrix genes in SCP-1 cells, i.e., COL1A1, FN1, and BGN. In summary, our data show that specific ELF-PEMFs may affect immune cell function. Thus, knowing the specific ELF-PEMFs conditions and the underlying mechanisms bears great potential as an adjuvant treatment to modulate immune responses during pathologies, e.g., fracture healing.
Collapse
|
7
|
Hollenberg AM, Huber A, Smith CO, Eliseev RA. Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair. Sci Rep 2021; 11:19114. [PMID: 34580378 PMCID: PMC8476611 DOI: 10.1038/s41598-021-98625-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.
Collapse
Affiliation(s)
- Alex M Hollenberg
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Aric Huber
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.
- University of Rochester Medical Center, 601 Elmwood Ave, Rm 1-8541, Rochester, NY, 14642, USA.
| |
Collapse
|
8
|
Zhou J, Gao YH, Zhu BY, He WF, Wang G, Xian CJ, Chen KM. The frequency window effect of sinusoidal electromagnetic fields in promoting osteogenic differentiation and bone formation involves extension of osteoblastic primary cilia and activation of protein kinase A. Cell Biol Int 2021; 45:1685-1697. [PMID: 33811714 DOI: 10.1002/cbin.11606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 01/27/2023]
Abstract
Electromagnetic fields (EMFs) have emerged as a versatile means for osteoporosis treatment and prevention. However, its optimal application parameters are still elusive. Here, we optimized the frequency parameter first by cell culture screening and then by animal experiment validation. Osteoblasts isolated from newborn rats (ROBs) were exposed 90 min/day to 1.8 mT SEMFs at different frequencies (ranging from 10 to 100 Hz, interval of 10 Hz). SEMFs of 1.8 mT inhibited ROB proliferation at 30, 40, 50, 60 Hz, but increased proliferation at 10, 70, 80 Hz. SEMFs of 10, 50, and 70 Hz promoted ROB osteogenic differentiation and mineralization as shown by alkaline phosphatase (ALP) activity, calcium content, and osteogenesis-related molecule expression analyses, with 50 Hz showing greater effects than 10 and 70 Hz. Treatment of young rats with 1.8 mT SEMFs at 10, 50, or 100 Hz for 2 months significantly increased whole-body bone mineral density (BMD) and femur microarchitecture, with the 50 Hz group showing the greatest effect. Furthermore, 1.8 mT SEMFs extended primary cilia lengths of ROBs and increased protein kinase A (PKA) activation also in a frequency-dependent manner, again with 50 Hz SEMFs showing the greatest effect. Pretreatment of ROBs with the PKA inhibitor KT5720 abolished the effects of SEMFs to increase primary cilia length and promote osteogenic differentiation/mineralization. These results indicate that 1.8 mT SEMFs have a frequency window effect in promoting osteogenic differentiation/mineralization in ROBs and bone formation in growing rats, which involve osteoblast primary cilia length extension and PKA activation.
Collapse
Affiliation(s)
- Jian Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China.,Institute of Orthopaedics, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Yu Hai Gao
- Institute of Orthopaedics, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Bao Ying Zhu
- Institute of Orthopaedics, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Wen Fang He
- Institute of Orthopaedics, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Gang Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cory J Xian
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Ke Ming Chen
- Institute of Orthopaedics, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| |
Collapse
|
9
|
Massari L, Brodano GB, Setti S, Caruso G, Gallazzi E, Salati S, Brayda-Bruno M. Does Capacitively Coupled Electric Fields Stimulation Improve Clinical Outcomes After Instrumented Spinal Fusion? A Multicentered Randomized, Prospective, Double-Blind, Placebo-Controlled Trial. Int J Spine Surg 2021; 14:936-943. [PMID: 33560253 DOI: 10.14444/7142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Lumbar spinal fusion (LSF) is used to treat lumbar degenerative disorders. Methods to improve the functional recovery of patients undergoing LSF is one of the main goals in daily clinical practice. The objective of this study is to assess whether biophysical stimulation with capacitively coupled electric fields (CCEF) can be used as adjuvant therapy to enhance clinical outcome in LSF-treated patients. METHODS Forty-two patients undergoing LSF were assessed and randomly allocated to either the active or to the placebo group. Follow-up visits were performed at 1, 3, 6, and 12 months after surgery; long-term follow-up was performed at year 10. Visual analogue scale (VAS), the Oswestry Disability Index (ODI), and the 36-item Short Form Health Survey (SF-36) questionnaire were recorded. RESULTS This study demonstrates a significant improvement in CCEF-treated patients at 6 and 12 months' follow-up for SF-36, and at 12 months' follow-up for ODI values. Based on SF-36 and ODI scores, we reported a significantly higher percentage of successful treatments at 12 months in the active compared with the placebo group. Moreover, in a subset of patients at 10 years' follow-up, a significant difference was reported in VAS and ODI scores between groups. CONCLUSIONS The results demonstrate that 3 months of CCEF treatment immediately after surgery is effective in reducing ODI and improving SF-36 score, and that these benefits can be maintained up to 12 months. In a subset of patients, these positive outcomes are retained up to 10 years. LEVEL OF EVIDENCE I. CLINICAL RELEVANCE This study suggests that CCEF stimulation can be used as an adjunct to LSF for spine diseases, for increasing overall quality of life and improving patients' functional recovery. CCEF is safe and well tolerated, compatible with activities of daily living.
Collapse
Affiliation(s)
- Leo Massari
- Department of Biomedical and Specialty Surgical Sciences, Azienda Ospedaliero-Universitaria di Ferrara, Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Gaetano Caruso
- Department of Biomedical and Specialty Surgical Sciences, Azienda Ospedaliero-Universitaria di Ferrara, Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Enrico Gallazzi
- Spine Surgery III and Scoliosis Department, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | | | - Marco Brayda-Bruno
- Spine Surgery III and Scoliosis Department, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
10
|
Evaluation of pulsed electromagnetic field protocols in implant osseointegration: in vivo and in vitro study. Clin Oral Investig 2020; 25:2925-2937. [PMID: 33033921 DOI: 10.1007/s00784-020-03612-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The present study aims to evaluate two protocols of pulsed electromagnetic field (PEMF) on osseointegration and establish one that addresses ideal parameters for its use in dentistry, especially in the optimization of the implants osseointegration process. MATERIALS AND METHODS Sixty male rats (Wistar) were allocated into three experimental groups: control (GC), test A (GTA, 3 h exposed), and test B (GTB, 1 h exposed). All animals received titanium implants in both tibias, and PEMF application (15 Hz, ± 1 mT, 5 days/week) occurred only in the test groups. They were euthanized at 03, 07, 21, and 45 days after PEMF therapy. Removal torque, histomorphometric measurements, three-dimensional radiographic evaluation, and in vitro biological assay analyses were performed. RESULTS GTB showed better results compared with GTA in removal torque tests, in bone volume and bone mineral density, cell viability, total protein content, and mineralization nodules (p < 0.05). GTA showed better performance in trabecular bone thickness and cell proliferation compared with GTB (p < 0.05), especially at osseointegration early periods. In the histomorphometric analysis and number of trabeculae, there were no differences in the test groups. CONCLUSION PEMF as a biostimulator was effective in optimizing the events in bone tissue that lead to osseointegration, especially when applied for a shorter time and in the initial periods of bone healing. CLINICAL RELEVANCE The PEMF therapy is an effective alternative method for optimizing bone healing.
Collapse
|
11
|
Zhang B, Xie Y, Ni Z, Chen L. Effects and Mechanisms of Exogenous Electromagnetic Field on Bone Cells: A Review. Bioelectromagnetics 2020; 41:263-278. [PMID: 32159242 DOI: 10.1002/bem.22258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
Osteoporosis, fractures, and other bone diseases or injuries represent serious health problems in modern society. A variety of treatments including drugs, surgeries, physical therapies, etc. have been used to prevent or delay the progression of these diseases/injuries with limited effects. Electromagnetic field (EMF) has been used to non-invasively treat bone diseases, such as fracture and osteoporosis, for many years. However, because a variety of cellular and molecular events can be affected by EMF with various parameters, the precise bioeffects and underlying mechanisms of specific EMF on bone cells are still obscure. Here, we summarize the common therapeutic parameters (frequency and intensity) of major types of EMF used to treat bone cells taken from 32 papers we selected from the PubMed database published in English from 1991 to 2018. Briefly, pulse EMF promotes the proliferation of osteoblasts when its frequency is 7.5-15 Hz or 50-75 Hz and the intensity is 0.40-1.55 mT or 3.8-4 mT. Sinusoidal EMF, with 0.9-4.8 mT and 45-60 Hz, and static magnetic field with 0.1-0.4 mT or 400 mT, can promote osteoblast differentiation and maturation. Finally, we summarize the latest advances on the molecular signaling pathways influenced by EMF in osteoblasts and osteoclasts. A variety of molecules such as adenosine receptors, calcium channels, BMP2, Notch, Wnt1, etc., can be influenced by EMF in osteoblasts. For osteoclasts, EMF affects RANK, NF-κB, MAPK, etc. We speculate that EMF with different frequencies and intensities exert distinct bioeffects on specific bone cells. More high-quality work is required to explore the detailed effects and underlying mechanisms of EMF on bone cells/skeleton to optimize the application of EMF on bone diseases/injuries. Bioelectromagnetics. 2020;41:263-278 © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Center of Bone Metabolism and Repair, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Center of Rehabilitation, Xingcheng Sanatorium of PLA Strategic Support Force, Xingcheng, China
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Center of Bone Metabolism and Repair, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Center of Bone Metabolism and Repair, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Center of Bone Metabolism and Repair, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
12
|
Ehnert S, Schröter S, Aspera-Werz RH, Eisler W, Falldorf K, Ronniger M, Nussler AK. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. J Clin Med 2019; 8:jcm8122028. [PMID: 31756999 PMCID: PMC6947624 DOI: 10.3390/jcm8122028] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The finding that alterations in electrical potential play an important role in the mechanical stimulation of the bone provoked hype that noninvasive extremely low frequency pulsed electromagnetic fields (ELF-PEMF) can be used to support healing of bone and osteochondral defects. This resulted in the development of many ELF-PEMF devices for clinical use. Due to the resulting diversity of the ELF-PEMF characteristics regarding treatment regimen, and reported results, exposure to ELF-PEMFs is generally not among the guidelines to treat bone and osteochondral defects. Notwithstanding, here we show that there is strong evidence for ELF-PEMF treatment. We give a short, confined overview of in vitro studies investigating effects of ELF-PEMF treatment on bone cells, highlighting likely mechanisms. Subsequently, we summarize prospective and blinded studies, investigating the effect of ELF-PEMF treatment on acute bone fractures and bone fracture non-unions, osteotomies, spinal fusion, osteoporosis, and osteoarthritis. Although these studies favor the use of ELF-PEMF treatment, they likewise demonstrate the need for more defined and better controlled/monitored treatment modalities. However, to establish indication-oriented treatment regimen, profound knowledge of the underlying mechanisms in the sense of cellular pathways/events triggered is required, highlighting the need for more systematic studies to unravel optimal treatment conditions.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
- Correspondence: or ; Tel.: +49-7071-606-1067
| | - Steffen Schröter
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Romina H. Aspera-Werz
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Wiebke Eisler
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Karsten Falldorf
- Sachtleben GmbH, Hamburg, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.)
| | - Michael Ronniger
- Sachtleben GmbH, Hamburg, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| |
Collapse
|
13
|
Galli C, Colangelo M, Pedrazzi G, Guizzardi S. The Response of Osteoblasts and Bone to Sinusoidal Electromagnetic Fields: Insights from the Literature. Calcif Tissue Int 2019; 105:127-147. [PMID: 30997574 DOI: 10.1007/s00223-019-00554-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Electromagnetic fields (EMFs) have been proposed as a tool to ameliorate bone formation and healing. Despite their promising results, however, they have failed to enter routine clinical protocols to treat bone conditions where higher bone mass has to be achieved. This is no doubt also due to a fundamental lack of knowledge and understanding on their effects and the optimal settings for attaining the desired therapeutic effects. This review analysed the available in vitro and in vivo studies that assessed the effects of sinusoidal EMFs (SEMFs) on bone and bone cells, comparing the results and investigating possible mechanisms of action by which SEMFs interact with tissues and cells. The effects of SEMFs on bone have not been as thoroughly investigated as pulsed EMFs; however, abundant evidence shows that SEMFs affect the proliferation and differentiation of osteoblastic cells, acting on multiple cellular mechanisms. SEMFs have also proven to increase bone mass in rodents under normal conditions and in osteoporotic animals.
Collapse
Affiliation(s)
- C Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - M Colangelo
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| | - G Pedrazzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Via Volturno 39, 43126, Parma, Italy
| | - S Guizzardi
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Zhou J, Gao YH, Zhu BY, Shao JL, Ma HP, Xian CJ, Chen KM. Sinusoidal Electromagnetic Fields Increase Peak Bone Mass in Rats by Activating Wnt10b/β-Catenin in Primary Cilia of Osteoblasts. J Bone Miner Res 2019; 34:1336-1351. [PMID: 30779853 DOI: 10.1002/jbmr.3704] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Extremely low-frequency electromagnetic fields have been considered a potential candidate for the prevention and treatment of osteoporosis; however, their action mechanism and optimal magnetic flux density (intensity) parameter are still elusive. The present study found that 50-Hz sinusoidal electromagnetic fields (SEMFs) at 1.8 mT increased the peak bone mass of young rats by increasing bone formation. Gene array expression studies with femoral bone samples showed that SEMFs increased the expression levels of collagen-1α1 and Wnt10b, a critical ligand of the osteogenic Wnt/β-catenin pathway. Consistently, SEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) in vitro through activating the Wnt10b/β-catenin pathway. This osteogenesis-promoting effect of SEMFs via Wnt10b/β-catenin signaling was found to depend on the functional integrity of primary cilia in osteoblasts. When the primary cilia were abrogated by small interfering RNA (siRNA) targeting IFT88, the ability of SEMFs to promote the osteogenic differentiation of ROBs through activating Wnt10b/β-catenin signaling was blocked. Although the knockdown of Wnt10b expression with RNA interference had no effect on primary cilia, it significantly suppressed the promoting effect of SEMFs on osteoblastic differentiation/maturation. Wnt10b was normally localized at the bases of primary cilia, but it disappeared (or was released) from the cilia upon SEMF treatment. Interestingly, primary cilia were elongated to different degrees by different intensities of 50-Hz SEMFs, with the window effect observed at 1.8 mT, and the expression level of Wnt10b increased in accord with the lengths of primary cilia. These results indicate that 50-Hz 1.8-mT SEMFs increase the peak bone mass of growing rats by promoting osteogenic differentiation/maturation of osteoblasts, which is mediated, at least in part, by Wnt10b at the primary cilia and the subsequent activation of Wnt/β-catenin signaling. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Bao-Ying Zhu
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Jia-Le Shao
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Hui-Ping Ma
- Department of Pharmacy, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| |
Collapse
|
15
|
Galli C, Pedrazzi G, Guizzardi S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics 2019; 40:211-233. [PMID: 30908726 DOI: 10.1002/bem.22187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Electromagnetic fields (EMFs) have long been known to interact with living organisms and their cells and to bear the potential for therapeutic use. Among the most extensively investigated applications, the use of Pulsed EMFs (PEMFs) has proven effective to ameliorate bone healing in several studies, although the evidence is still inconclusive. This is due in part to our still-poor understanding of the mechanisms by which PEMFs act on cells and affect their functions and to an ongoing lack of consensus on the most effective parameters for specific clinical applications. The present review has compared in vitro studies on PEMFs on different osteoblast models, which elucidate potential mechanisms of action for PEMFs, up to the most recent insights into the role of primary cilia, and highlight the critical issues underlying at least some of the inconsistent results in the available literature. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Carlo Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Wang YY, Pu XY, Shi WG, Fang QQ, Chen XR, Xi HR, Gao YH, Zhou J, Xian CJ, Chen KM. Pulsed electromagnetic fields promote bone formation by activating the sAC-cAMP-PKA-CREB signaling pathway. J Cell Physiol 2019; 234:2807-2821. [PMID: 30067871 DOI: 10.1002/jcp.27098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023]
Abstract
The application of pulsed electromagnetic fields (PEMFs) in the prevention and treatment of osteoporosis has long been an area of interest. However, the clinical application of PEMFs remains limited because of the poor understanding of the PEMF action mechanism. Here, we report that PEMFs promote bone formation by activating soluble adenylyl cyclase (sAC), cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and cAMP response element-binding protein (CREB) signaling pathways. First, it was found that 50 Hz 0.6 millitesla (mT) PEMFs promoted osteogenic differentiation of rat calvarial osteoblasts (ROBs), and that PEMFs activated cAMP-PKA-CREB signaling by increasing intracellular cAMP levels, facilitating phosphorylation of PKA and CREB, and inducing nuclear translocation of phosphorylated (p)-CREB. Blocking the signaling by adenylate cyclase (AC) and PKA inhibitors both abolished the osteogenic effect of PEMFs. Second, expression of sAC isoform was found to be increased significantly by PEMF treatment. Blocking sAC using sAC-specific inhibitor KH7 dramatically inhibited the osteogenic differentiation of ROBs. Finally, the peak bone mass of growing rats was significantly increased after 2 months of PEMF treatment with 90 min/day. The serum cAMP content, p-PKA, and p-CREB as well as the sAC protein expression levels were all increased significantly in femurs of treated rats. The current study indicated that PEMFs promote bone formation in vitro and in vivo by activating sAC-cAMP-PKA-CREB signaling pathway of osteoblasts directly or indirectly.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Xiu-Ying Pu
- Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wen-Gui Shi
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Qing-Qing Fang
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Xin-Ru Chen
- Department of Biology, College of Life Sciences, Northwest A & F University, Yanglin, China
| | - Hui-Rong Xi
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| |
Collapse
|
17
|
Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L, Setti S, Osti R, Vaienti E, Ruosi C, Cadossi R. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. INTERNATIONAL ORTHOPAEDICS 2019; 43:539-551. [PMID: 30645684 PMCID: PMC6399199 DOI: 10.1007/s00264-018-4274-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Biophysical stimulation is a non-invasive therapy used in orthopaedic practice to increase and enhance reparative and anabolic activities of tissue. METHODS A sistematic web-based search for papers was conducted using the following titles: (1) pulsed electromagnetic field (PEMF), capacitively coupled electrical field (CCEF), low intensity pulsed ultrasound system (LIPUS) and biophysical stimulation; (2) bone cells, bone tissue, fracture, non-union, prosthesis and vertebral fracture; and (3) chondrocyte, synoviocytes, joint chondroprotection, arthroscopy and knee arthroplasty. RESULTS Pre-clinical studies have shown that the site of interaction of biophysical stimuli is the cell membrane. Its effect on bone tissue is to increase proliferation, synthesis and release of growth factors. On articular cells, it creates a strong A2A and A3 adenosine-agonist effect inducing an anti-inflammatory and chondroprotective result. In treated animals, it has been shown that the mineralisation rate of newly formed bone is almost doubled, the progression of the osteoarthritic cartilage degeneration is inhibited and quality of cartilage is preserved. Biophysical stimulation has been used in the clinical setting to promote the healing of fractures and non-unions. It has been successfully used on joint pathologies for its beneficial effect on improving function in early OA and after knee surgery to limit the inflammation of periarticular tissues. DISCUSSION The pooled result of the studies in this review revealed the efficacy of biophysical stimulation for bone healing and joint chondroprotection based on proven methodological quality. CONCLUSION The orthopaedic community has played a central role in the development and understanding of the importance of the physical stimuli. Biophysical stimulation requires care and precision in use if it is to ensure the success expected of it by physicians and patients.
Collapse
Affiliation(s)
- Leo Massari
- University of Ferrara, Via Vigne 4, 44121, Ferrara, Italy.
| | - Franco Benazzo
- IRCCS Foundation "San Matteo" Hospital, University of Pavia, 27100, Pavia, Italy
| | | | | | | | | | | | | | - Carlo Ruosi
- Federico II University Naples, 80100, Naples, Italy
| | | |
Collapse
|
18
|
Hu W, Chen T, Tsao C, Cheng Y. The effects of substrate‐mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. J Biomed Mater Res B Appl Biomater 2018; 107:1607-1619. [DOI: 10.1002/jbm.b.34253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Wei‐Wen Hu
- Department of Chemical and Materials EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
- Center for Biocellular EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
| | - Tun‐Chi Chen
- Department of Chemical and Materials EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
| | - Chia‐Wen Tsao
- Center for Biocellular EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
- Department of Mechanical EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
| | - Yu‐Che Cheng
- Center for Biocellular EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
- School of MedicineFu Jen Catholic University New Taipei City Taiwan
- Proteomics Laboratory, Department of Medical ResearchCathay General Hospital Taipei Taiwan
- Department of Biomedical Sciences and EngineeringNational Central University Zhongli Taiwan
| |
Collapse
|
19
|
Liu YL, Li DW, He J, Xie XZ, Chen D, Yan EK, Ye YJ, Yin DC. A periodic magnetic field as a special environment for scientific research created by rotating permanent magnet pairs. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:105103. [PMID: 30399658 DOI: 10.1063/1.5016570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
A magnetic field is an often-encountered physical environment that can affect many processes, including chemical, physical, and biochemical processes. Utilization of magnetic fields is thus very helpful in a wide variety of applications, such as scientific research in various disciplines, materials processing (e.g., crystal growth and separation) in industry, and nuclear fusion. There are many different types of magnetic fields generated by different magnets, such as superconducting magnets, electromagnets, hybrid magnets, pulsed magnets, and permanent magnets. In this paper, we introduce a newly designed periodic magnetic field generated by rotating permanent magnet pairs. Preliminary tests showed that the periodic magnetic field is valuable in water evaporation, silver deposition, and protein crystallization. Apparently, in such a new environment that can generate a periodic magnetic field, a periodic force field will also be simultaneously generated on the sample. Further work shall be carried out to explore the potential applications of this magnetic field.
Collapse
Affiliation(s)
- Ya-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Da-Wei Li
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Jin He
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Xu-Zhuo Xie
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Da Chen
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Er-Kai Yan
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Ya-Jing Ye
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
20
|
The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater 2018; 2018:8935750. [PMID: 30254677 PMCID: PMC6140132 DOI: 10.1155/2018/8935750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Implantable biomaterials are extensively used to promote bone regeneration or support endosseous prosthesis in orthopedics and dentistry. Their use, however, would benefit from additional strategies to improve bone responses. Pulsed Electromagnetic Fields (PEMFs) have long been known to act on osteoblasts and bone, affecting their metabolism, in spite of our poor understanding of the underlying mechanisms. Hence, we have the hypothesis that PEMFs may also ameliorate cell responses to biomaterials, improving their growth, differentiation, and the expression of a mature phenotype and therefore increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings used for PEMFs stimulation still represents a hurdle to better define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone.
Collapse
|
21
|
Zhu BY, Yang ZD, Chen XR, Zhou J, Gao YH, Xian CJ, Chen KM. Exposure Duration Is a Determinant of the Effect of Sinusoidal Electromagnetic Fields on Peak Bone Mass of Young Rats. Calcif Tissue Int 2018; 103:95-106. [PMID: 29362823 DOI: 10.1007/s00223-018-0396-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 11/26/2022]
Abstract
We proposed a three-step strategy to obtain the optimal therapeutic parameters, which is composed of large-scale screening at cellular level, verification in animal experiments, and confirmation by a clinical trial. The objective of the current study was to test the feasibility of our strategy. Newborn rat calvarial osteoblasts were treated by 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) with 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 h/days, respectively. The osteogenic differentiation and maturation of the osteoblast were assayed and compared to obtain the optimal duration. One-month-old growing rats were then treated by the same SEMFs with 0.5, 1.5, and 2.5 h/days, respectively, and the peak bone mass was analyzed after 2 months. It was found that the optimal exposure duration to promote the osteogenic differentiation and maturation of osteoblasts was 1.5 h/days, judging by the increasing degrees of ALP activity, calcified nodules formed, the gene and protein expression levels of Runx-2, BMP-2, and Col-I, as well as the expression levels of signaling proteins of the BMP-2/Smad1/5/8 pathway. The highest increase of peak bone mass after 2 months was also obtained by 1.5 h/days, judging by the results of X-ray dual-energy absorptiometry, mechanical property analysis, micro-CT scanning, and serum bone turnover marker examinations. The above results indicated that exposure duration is a determinant for the therapeutic effect of EMFs, and the optimal therapeutic effects only can be obtained by the optimal exposure duration.
Collapse
Affiliation(s)
- B Y Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, 730050, People's Republic of China
| | - Z D Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
| | - X R Chen
- College of Life Sciences, Northwest A & F University, Yanglin, 712100, People's Republic of China
| | - J Zhou
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, 730050, People's Republic of China
| | - Y H Gao
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, 730050, People's Republic of China
| | - C J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - K M Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
22
|
Ehnert S, van Griensven M, Unger M, Scheffler H, Falldorf K, Fentz AK, Seeliger C, Schröter S, Nussler AK, Balmayor ER. Co-Culture with Human Osteoblasts and Exposure to Extremely Low Frequency Pulsed Electromagnetic Fields Improve Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19040994. [PMID: 29584629 PMCID: PMC5979428 DOI: 10.3390/ijms19040994] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/11/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Human adipose-derived mesenchymal stem cells (Ad-MSCs) have been proposed as suitable option for cell-based therapies to support bone regeneration. In the bone environment, Ad-MSCs will receive stimuli from resident cells that may favor their osteogenic differentiation. There is recent evidence that this process can be further improved by extremely low frequency pulsed electromagnetic fields (ELF-PEMFs). Thus, the project aimed at (i) investigating whether co-culture conditions of human osteoblasts (OBs) and Ad-MSCs have an impact on their proliferation and osteogenic differentiation; (ii) whether this effect can be further improved by repetitive exposure to two specific ELF-PEMFs (16 and 26 Hz); (iii) and the effect of these ELF-PEMFs on human osteoclasts (OCs). Osteogenic differentiation was improved by co-culturing OBs and Ad-MSCs when compared to the individual mono-cultures. An OB to Ad-MSC ratio of 3:1 had best effects on total protein content, alkaline phosphatase (AP) activity, and matrix mineralization. Osteogenic differentiation was further improved by both ELF-PEMFs investigated. Interestingly, only repetitive exposure to 26 Hz ELF-PEMF increased Trap5B activity in OCs. Considering this result, a treatment with gradually increasing frequency might be of interest, as the lower frequency (16 Hz) could enhance bone formation, while the higher frequency (26 Hz) could enhance bone remodeling.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany.
| | - Martijn van Griensven
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany.
| | - Marina Unger
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany.
| | - Hanna Scheffler
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany.
| | | | | | - Claudine Seeliger
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany.
| | - Steffen Schröter
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany.
| | - Andreas K Nussler
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany.
| | - Elizabeth R Balmayor
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany.
| |
Collapse
|
23
|
Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O 2- and H 2O 2. Sci Rep 2017; 7:14544. [PMID: 29109418 PMCID: PMC5673962 DOI: 10.1038/s41598-017-14983-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/13/2017] [Indexed: 12/02/2022] Open
Abstract
Recently, we identified a specific extremely low-frequency pulsed electromagnetic field (ELF-PEMF) that supports human osteoblast (hOBs) function in an ERK1/2-dependent manner, suggesting reactive oxygen species (ROS) being key regulators in this process. Thus, this study aimed at investigating how ELF-PEMF exposure can modulate hOBs function via ROS. Our results show that single exposure to ELF-PEMF induced ROS production in hOBs, without reducing intracellular glutathione. Repetitive exposure (>3) to ELF-PEMF however reduced ROS-levels, suggesting alterations in the cells antioxidative stress response. The main ROS induced by ELF-PEMF were •O2− and H2O2, therefore expression/activity of antioxidative enzymes related to these ROS were further investigated. ELF-PEMF exposure induced expression of GPX3, SOD2, CAT and GSR on mRNA, protein and enzyme activity level. Scavenging •O2− and H2O2 diminished the ELF-PEMF effect on hOBs function (AP activity and mineralization). Challenging the hOBs with low amounts of H2O2 on the other hand improved hOBs function. In summary, our data show that ELF-PEMF treatment favors differentiation of hOBs by producing non-toxic amounts of ROS, which induces antioxidative defense mechanisms in these cells. Thus, ELF-PEMF treatment might represent an interesting adjunct to conventional therapy supporting bone formation under oxidative stress conditions, e.g. during fracture healing.
Collapse
|
24
|
Haghighat N, Abdolmaleki P, Behmanesh M, Satari M. Stable morphological-physiological and neural protein expression changes in rat bone marrow mesenchymal stem cells treated with electromagnetic field and nitric oxide. Bioelectromagnetics 2017; 38:592-601. [DOI: 10.1002/bem.22072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Nazanin Haghighat
- Faculty of Biological Science; Department of Biophysics; Tarbiat Modares University; Tehran Iran
| | - Parviz Abdolmaleki
- Faculty of Biological Science; Department of Biophysics; Tarbiat Modares University; Tehran Iran
| | - Mehrdad Behmanesh
- Faculty of Biological Science; Department of Genetics; Tarbiat Modares University; Tehran Iran
| | - Mohammad Satari
- Faculty of Biological Science; Department of Biophysics; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
25
|
Bique AM, Kaivosoja E, Mikkonen M, Paulasto-Kröckel M. Choice of osteoblast model critical for studying the effects of electromagnetic stimulation on osteogenesis in vitro. Electromagn Biol Med 2016; 35:353-64. [PMID: 27355896 DOI: 10.3109/15368378.2016.1138124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The clinical benefits of electromagnetic field (EMF) therapy in enhancing osteogenesis have been acknowledged for decades, but agreement regarding the underlying mechanisms continues to be sought. Studies have shown EMFs to promote osteoblast-like cell proliferation, or contrarily, to induce differentiation and enhance mineralization. Typically these disparities have been attributed to methodological differences. The present paper argues the possibility that the chosen osteoblast model impacts stimulation outcome. Phenotypically immature cells, particularly at low seeding densities, appear to be prone to EMF-amplified proliferation. Conversely, mature cells at higher densities seem to be predisposed to earlier onset differentiation and mineralization. This suggests that EMFs augment ongoing processes in cell populations. To test this hypothesis, mature SaOS-2 cells and immature MC3T3-E1 cells at various densities, with or without osteo-induction, were exposed to sinusoidal 50 Hz EMF. The exposure stimulated the proliferation of MC3T3-E1 and inhibited the proliferation of SaOS-2 cells. Baseline alkaline phosphatase (ALP) expression of SaOS-2 cells was high and rapidly further increased with EMF exposure, whereas ALP effects in MC3T3-E1 cells were not seen until the second week. Thus both cell types responded differently to EMF stimulation, corroborating the hypothesis that the phenotypic maturity and culture stage of cells influence stimulation outcome.
Collapse
Affiliation(s)
- Anna-Maria Bique
- a Aalto University Department of Electrical Engineering and Automation , School of Electrical Engineering , Espoo , Finland
| | - Emilia Kaivosoja
- a Aalto University Department of Electrical Engineering and Automation , School of Electrical Engineering , Espoo , Finland
| | - Marko Mikkonen
- a Aalto University Department of Electrical Engineering and Automation , School of Electrical Engineering , Espoo , Finland
| | - Mervi Paulasto-Kröckel
- a Aalto University Department of Electrical Engineering and Automation , School of Electrical Engineering , Espoo , Finland
| |
Collapse
|
26
|
Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4927035. [PMID: 26941827 PMCID: PMC4749801 DOI: 10.1155/2016/4927035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 11/19/2022]
Abstract
Pulsed electromagnetic field (PEMF) has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP), but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD) level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation.
Collapse
|
27
|
Ehnert S, Falldorf K, Fentz AK, Ziegler P, Schröter S, Freude T, Ochs BG, Stacke C, Ronniger M, Sachtleben J, Nussler AK. Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure - Clinical implication possible. Bone Rep 2015; 3:48-56. [PMID: 28377966 PMCID: PMC5365212 DOI: 10.1016/j.bonr.2015.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 01/15/2023] Open
Abstract
For many years electromagnetic fields (EMFs) have been used clinically with various settings as an exogenous stimulation method to promote fracture healing. However, underlying mechanisms of action and EMF parameters responsible for certain effects remain unclear. Our aim was to investigate the influence of defined EMFs on human osteoblasts' and osteoclasts' viability and function. Primary human osteoblasts and osteoclasts were treated 3 times weekly for 21 days during their maturation process using the Somagen® device (Sachtleben GmbH, Hamburg, Germany), generating defined extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs). Certain ELF-PEMF treatment significantly increased the total protein content (up to 66%), mitochondrial activity (up to 91.1%) and alkaline phosphatase (AP) activity (up to 129.9%) of human osteoblasts during the entire differentiation process. Furthermore, ELF-PEMF treatment enhanced formation of mineralized matrix (up to 276%). Interestingly, ELF-PEMF dependent induction of AP activity and matrix mineralization was strongly donor dependent — only osteoblasts with a poor initial osteoblast function responded to the ELF-PEMF treatment. As a possible regulatory mechanism, activation of the ERK1/2 signaling pathway was identified. Maturation of osteoclasts from human monocytes was not affected by the ELF-PEMF treatment. In summary the results indicate that a specific ELF-PEMF treatment with the Somagen® device improves viability and maturation of osteoblasts, while osteoclast viability and maturation was not affected. Hence, ELF-PEMF might represent an interesting adjunct to conventional therapy supporting bone formation during fracture healing or even for the treatment of osteoporosis. Exposure to extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) increases viability of human osteoblasts. Exposure to specific ELF-PEMFs improves primary human osteoblasts’ function. Especially osteoblasts with a low differentiation capacity profit from the ELF-PEMF exposure. For the observed effects ERK1/2 activation is pivotal. Osteoclast viability and function is not affected by the same ELF-PEMF.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | | | | | - Patrick Ziegler
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Steffen Schröter
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Thomas Freude
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Björn G Ochs
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | | | | | | | - Andreas K Nussler
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| |
Collapse
|
28
|
Yan JL, Zhou J, Ma HP, Ma XN, Gao YH, Shi WG, Fang QQ, Ren Q, Xian CJ, Chen KM. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 2015; 404:132-40. [PMID: 25661534 DOI: 10.1016/j.mce.2015.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
Although pulsed electromagnetic fields (PEMFs) have been approved as a therapy for osteoporosis, action mechanisms and optimal parameters are elusive. To determine the optimal intensity, exposure effects of 50 Hz PEMFs of 0.6-3.6 mT (0.6 interval at 90 min/day) were investigated on proliferation and osteogenic differentiation of cultured calvarial osteoblasts. All intensity groups stimulated proliferation significantly with the highest effect at 0.6 mT. The 0.6 mT group also obtained the optimal osteogenic effect as demonstrated by the highest ALP activity, ALP(+) CFU-f colony formation, nodule mineralization, and expression of COL-1 and BMP-2. To verify our hypothesis that the primary cilia are the cellular sensors for PEMFs, osteoblasts were also transfected with IFT88 siRNA or scrambled control, and osteogenesis-promoting effects of 0.6 mT PEMFs were found abrogated when primary cilia were inhibited by IFT88 siRNA. Thus primary cilia of osteoblasts play an indispensable role in mediating PEMF osteogenic effect in vitro.
Collapse
Affiliation(s)
- Juan-Li Yan
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Jian Zhou
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Hui-Ping Ma
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Xiao-Ni Ma
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Yu-Hai Gao
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Wen-Gui Shi
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Qing-Qing Fang
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Qian Ren
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China.
| |
Collapse
|
29
|
Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells. PLoS One 2015; 10:e0117672. [PMID: 25695503 PMCID: PMC4335008 DOI: 10.1371/journal.pone.0117672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022] Open
Abstract
Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn't change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein.
Collapse
|
30
|
Singh S, Mani KV, Kapoor N. Effect of occupational EMF exposure from radar at two different frequency bands on plasma melatonin and serotonin levels. Int J Radiat Biol 2015; 91:426-34. [PMID: 25565559 DOI: 10.3109/09553002.2015.1004466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To delineate the effect of chronic electromagnetic field (EMF) exposure from radar on plasma melatonin and serotonin levels in occupationally exposed military personnel. SUBJECTS AND METHODS A total of 166 male military personnel participated in the study out of which only 155 joined for blood draw. They were divided into three sets: Control group (n = 68), exposure group I (n = 40) exposed to 8-12 GHz and exposure group II (n = 58) working with radar at 12.5-18 GHz frequency. The three groups were further split into two groups according to their years of service (up to 10 years and > 10 years) in order to investigate the effect of years of exposure from radar. Melatonin and serotonin levels were estimated by enzyme immunoassay in fasting blood samples collected from 06:00-07:00 h. EMF measurements were recorded at different locations using Satimo EME Guard 'Personal Exposure Meter' and Narda 'Broad Band Field Meter'. RESULTS The group I exposed population registered a minor though not significant decrease in plasma melatonin concentration while the other group II exposed population registered statistically significant decline in melatonin concentration when compared with controls. Highly significant increase in plasma serotonin levels was found in exposure group II when compared to control whereas marginal non-significant rise was also registered in exposure group I in comparison to control. Exposure in terms of length of service up to 10 years did not produce any significant effect in the indoleamine levels in both the exposure groups when they were compared with their respective control groups. Whereas, length of service greater than 10 years was observed to decrease and increase respectively the melatonin and serotonin concentration significantly in exposure group II but not in exposure group I. However, correlation test did not yield any significant association between years of service and melatonin or serotonin levels respectively in both the exposure sets I and II. No significant association was observed between melatonin and serotonin levels as well. CONCLUSION The study showed the EMF ability to influence plasma melatonin and serotonin concentration in radar workers, significantly in 12.5-18 GHz range with service period greater than 10 years.
Collapse
Affiliation(s)
- Sarika Singh
- Defence Institute of Physiology & Allied Science, Occupational Health , Delhi , India
| | | | | |
Collapse
|
31
|
Zhou J, Ma XN, Gao YH, Yan JL, Shi WG, Xian CJ, Chen KM. Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissuesin vitro. Electromagn Biol Med 2014; 35:75-83. [DOI: 10.3109/15368378.2014.971958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|