1
|
Qin TZ, Wang X, Du JZ, Lin JJ, Xue YZ, Guo L, Lai PP, Jing YT, Zhang ZW, Ding GR. Effects of radiofrequency field from 5G communications on the spatial memory and emotionality in mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:316-327. [PMID: 36413628 DOI: 10.1080/09603123.2022.2149708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The rapid development of 5G network technology has gained much popularity as well as concerns about its adverse effects. In this study, we investigated the effects of 4.9 GHz (one of working frequencies of 5G communication) radiofrequency (RF) field on emotional behaviours and spatial memory in adult male mice. Open field test (OFT), tail suspension test (TST) and Y maze were used to evaluate anxiety, depression-like behaviour and spatial memory ability, respectively. It was found that the anxiety-like behaviour and spatial memory ability of mice did not change, but the depression-like behaviour was induced in mice after 4.9 GHz RF exposure. In addition, the number of neurons significantly reduced and the level of pyroptosis obviously increased in amygdala rather than hippocampus. These results suggested that 4.9 GHz RF exposure could induce depression-like behaviour, which might be associated with the neuronal pyroptosis in amygdala.
Collapse
Affiliation(s)
- Tong-Zhou Qin
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Xing Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Jun-Ze Du
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Jia-Jin Lin
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Pan-Pan Lai
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhao-Wen Zhang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| |
Collapse
|
2
|
Shirbandi K, Khalafi M, J Bevelacqua J, Sadeghian N, Adiban S, Bahaeddini Zarandi F, Mortazavi SA, Mortazavi SH, Mortazavi SMJ, S Welsh J. Exposure to Low Levels of Radiofrequency Electromagnetic Fields Emitted from Cell-phones as a Promising Treatment of Alzheimer's Disease: A Scoping Review Study. J Biomed Phys Eng 2023; 13:3-16. [PMID: 36818013 PMCID: PMC9923247 DOI: 10.31661/jbpe.v0i0.2109-1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/01/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most significant public health concerns and tremendous economic challenges. Studies conducted over the past decades show that exposure to radiofrequency electromagnetic fields (RF-EMFs) may relieve AD symptoms. OBJECTIVE To determine if exposure to RF-EMFs emitted by cellphones affect the risk of AD. MATERIAL AND METHODS In this review, all relevant published articles reporting an association of cell phone use with AD were studied. We systematically searched international datasets to identify relevant studies. Finally, 33 studies were included in the review. Our review discusses the effects of RF-EMFs on the amyloid β (Aβ), oxidative stress, apoptosis, reactive oxygen species (ROS), neuronal death, and astrocyte responses. Moreover, the role of exposure parameters, including the type of exposure, its duration, and specific absorption rate (SAR), are discussed. RESULTS Progressive factors of AD such as Aβ, myelin basic protein (MBP), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and neurofilament light polypeptide (NFL) were decreased. While tau protein showed no change, factors affecting brain activity such as glial fibrillary acidic protein (GFAP), mitogen-activated protein kinases (MAPKs), cerebral blood flow (CBF), brain temperature, and neuronal activity were increased. CONCLUSION Exposure to low levels of RF-EMFs can reduce the risk of AD by increasing MAPK and GFAP and decreasing MBP. Considering the role of apoptosis in AD and the effect of RF-EMF on the progression of the process, this review indicates the positive effect of these exposures.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Department of International Affairs (IAD), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Khalafi
- Allied Health Science, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Najmeh Sadeghian
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saina Adiban
- Biotechnology Student, Islamic Azad University, Tehran, Iran
| | | | | | | | | | - James S Welsh
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, USA
- Department of Radiation Oncology, Edward Hines Jr VA Hospital Hines, Illinois, USA
| |
Collapse
|
3
|
BAHADIR A. Radyofrekans/Mikrodalga Elektromanyetik Radyasyonun Anksiyete ve Depresyon Üzerine Etkileri: Deneysel Hayvan Modellerine Dayalı Çalışmalara Ait Literatür Taraması. DÜZCE ÜNIVERSITESI SAĞLIK BILIMLERI ENSTITÜSÜ DERGISI 2020. [DOI: 10.33631/duzcesbed.716526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Singh KV, Gautam R, Meena R, Nirala JP, Jha SK, Rajamani P. Effect of mobile phone radiation on oxidative stress, inflammatory response, and contextual fear memory in Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19340-19351. [PMID: 32212071 DOI: 10.1007/s11356-020-07916-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In the present lifestyle, we are continuously exposed to radiofrequency electromagnetic field (RF-EMF) radiation generated mainly by mobile phones (MP). Among other organs, our brain and hippocampus in specific, is the region where effect of any environmental perturbation is most pronounced. So, this study was aimed to examine changes in major parameters (oxidative stress, level of pro-inflammatory cytokines (PICs), hypothalamic-pituitary-adrenal (HPA) axis hormones, and contextual fear conditioning) which are linked to hippocampus directly or indirectly, upon exposure to mobile phone radiofrequency electromagnetic field (MP-RF-EMF) radiation. Exposure was performed on young adult male Wistar rats for 16 weeks continuously (2 h/day) with MP-RF-EMF radiation having frequency, power density, and specific absorption rate (SAR) of 1966.1 MHz, 4.0 mW/cm2, and 0.36 W/kg, respectively. Another set of animals kept in similar conditions without any radiation exposure serves as control. Towards the end of exposure period, animals were tested for fear memory and then euthanized to measure hippocampal oxidative stress, level of circulatory PICs, and stress hormones. We observed significant increase in hippocampal oxidative stress (p < 0.05) and elevated level of circulatory PICs viz. IL-1beta (p < 0.01), IL-6 (p < 0.05), and TNF-alpha (p < 0.001) in experimental animals upon exposure to MP-RF-EMF radiation. Adrenal gland weight (p < 0.001) and level of stress hormones viz. adrenocorticotropic hormone (ACTH) (p < 0.01) and corticosterone (CORT) (p < 0.05) were also found to increase significantly in MP-RF-EMF radiation-exposed animals as compared with control. However, alteration in contextual fear memory was not significant enough. In conclusion, current study shows that chronic exposure to MP-RF-EMF radiation emitted from mobile phones may induce oxidative stress, inflammatory response, and HPA axis deregulation. However, changes in hippocampal functionality depend on the complex interplay of several opposing factors that got affected upon MP-RF-EMF exposure.
Collapse
Affiliation(s)
- Kumari Vandana Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramovtar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sushil Kumar Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Effects of a Single Head Exposure to GSM-1800 MHz Signals on the Transcriptome Profile in the Rat Cerebral Cortex: Enhanced Gene Responses Under Proinflammatory Conditions. Neurotox Res 2020; 38:105-123. [PMID: 32200527 PMCID: PMC7223958 DOI: 10.1007/s12640-020-00191-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 01/02/2023]
Abstract
Mobile communications are propagated by electromagnetic fields (EMFs), and since the 1990s, they operate with pulse-modulated signals such as the GSM-1800 MHz. The biological effects of GSM-EMF in humans affected by neuropathological processes remain seldom investigated. In this study, a 2-h head-only exposure to GSM-1800 MHz was applied to (i) rats undergoing an acute neuroinflammation triggered by a lipopolysaccharide (LPS) treatment, (ii) age-matched healthy rats, or (iii) transgenic hSOD1G93A rats that modeled a presymptomatic phase of human amyotrophic lateral sclerosis (ALS). Gene responses were assessed 24 h after the GSM head-only exposure in a motor area of the cerebral cortex (mCx) where the mean specific absorption rate (SAR) was estimated to be 3.22 W/kg. In LPS-treated rats, a genome-wide mRNA profiling was performed by RNA-seq analysis and revealed significant (adjusted p value < 0.05) but moderate (fold changes < 2) upregulations or downregulations affecting 2.7% of the expressed genes, including genes expressed predominantly in neuronal or in glial cell types and groups of genes involved in protein ubiquitination or dephosphorylation. Reverse transcription-quantitative PCR analyses confirmed gene modulations uncovered by RNA-seq data and showed that in a set of 15 PCR-assessed genes, significant gene responses to GSM-1800 MHz depended upon the acute neuroinflammatory state triggered in LPS-treated rats, because they were not observed in healthy or in hSOD1G93A rats. Together, our data specify the extent of cortical gene modulations triggered by GSM-EMF in the course of an acute neuroinflammation and indicate that GSM-induced gene responses can differ according to pathologies affecting the CNS.
Collapse
|
6
|
Zarei S, Vahab M, Oryadi-Zanjani MM, Alighanbari N, Mortazavi SM. Mother's Exposure to Electromagnetic Fields before and during Pregnancy is Associated with Risk of Speech Problems in Offspring. J Biomed Phys Eng 2019; 9:61-68. [PMID: 30881935 PMCID: PMC6409372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/03/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rapid advances in technology, especially in the field of telecommunication, have led to extraordinary levels of mothers' exposures to radiofrequency electromagnetic fields (RF-EMFs) prior to or during pregnancy. OBJECTIVE The main goal of this study was to answer this question whether exposure of women to common sources of RF-EMFs either prior to or during pregnancy is related to speech problems in the offspring. MATERIALS AND METHODS In this study, mothers of 110 three-to-seven-year-old children with speech problems and 75 healthy children (control group) were interviewed. These mothers were asked whether they had exposure to different sources of EMFs such as mobile phones, mobile base stations, Wi-Fi, cordless phones, laptops and power lines. Chi square test was used to analyze the differences observed between the control and exposed groups. RESULTS Statistically significant associations were found between the use of cordless phone and offspring speech problems for both before pregnancy and during pregnancy maternal exposures (P=0.005 and P=0.014, respectively). However, due to high rate of mobile phone use in both groups, this study failed to show any link between mobile phone use and speech problems in offspring. Furthermore, significant associations were observed between living in the vicinity of power lines and speech problems again for both before pregnancy and during pregnancy maternal exposures (P=0.003 and P=0.002, respectively). However, exposure to other sources of non-ionizing radiation was not linked to speech problems. Moreover, exposure to ionizing radiation (e.g. radiography before and during pregnancy) was not associated with the occurrence of speech problems. CONCLUSION Although this study has some limitations, it leads us to this conclusion that higher-than-ever levels of maternal exposure to electromagnetic fields could be linked to offspring speech problems.
Collapse
Affiliation(s)
- S Zarei
- Department of Speech Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Vahab
- Department of Speech Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Childhood Speech and Language Disorders (NCSLD), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - M M Oryadi-Zanjani
- Department of Speech Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Childhood Speech and Language Disorders (NCSLD), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - N Alighanbari
- Occupational Health Engineering Department, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Mj Mortazavi
- Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Ouadah NS, Lecomte A, Robidel F, Olsson A, Deltour I, Schüz J, Blazy K, Villégier AS. Possible effects of radiofrequency electromagnetic fields on in vivo C6 brain tumors in Wistar rats. J Neurooncol 2018; 140:539-546. [PMID: 30421158 DOI: 10.1007/s11060-018-03012-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/08/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Glioblastoma is a malignant brain tumor which has one of the poorest prognosis. It is not clear if toxic environmental factors can influence its aggressiveness. Recently, it was suggested that brain cancer patients with heavy cell phone use showed reduced survival. Here we aimed to assess the effect of controlled brain averaged specific absorption rate (BASAR) from heavy use of cell phone radiofrequency electromagnetic fields (RF-EMF) on in vivo C6 brain tumors in Wistar rats. METHODS C6 cells grafted male rats were exposed to GSM 900 MHz signal at environmental BASAR, 0 (sham), 0.25 or 0.5 W/kg (5 days a week, 45 min a day in restraint), or were cage controls (no restraint). At death, tumor volume and immunohistochemistry for CD31, cleaved caspase (CC) 3 and Ki67 were assessed to examine vascularization, apoptosis and cellular divisions, respectively. Moreover, immune cell invasion, necrosis and mitotic index were determined. RESULTS Results showed no BASAR effect on survival (31 days post-graft median), tumor volume, mitotic index, vascularization, infiltration, necrosis or cell division. However, results suggested a BASAR-dependent reduction of immune cell invasion and apoptosis. CONCLUSIONS Our data suggested an action of RF-EMF by reducing immune cell invasion and glioblastoma cell apoptosis, at probably too low amplitude to impact survival. Further replication studies are needed to confirm these observations.
Collapse
Affiliation(s)
- Nihal S Ouadah
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Anthony Lecomte
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Franck Robidel
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Ann Olsson
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Isabelle Deltour
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France.
| |
Collapse
|
8
|
Petitdant N, Lecomte A, Robidel F, Gamez C, Blazy K, Villégier AS. Alteration of adaptive behaviors of progeny after maternal mobile phone exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10894-10903. [PMID: 29397508 DOI: 10.1007/s11356-017-1178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Exposure of pregnant women to radiofrequency (RF) devices raises questions on their possible health consequences for their progeny. We examined the hazard threshold of gestational RF on the progeny's glial homeostasis, sensory-motor gating, emotionality, and novelty seeking and tested whether maternal immune activation would increase RF toxicity. Pregnant dams were daily restrained with loop antennas adjoining the abdomen (fetus body specific absorption rates (SAR): 0, 0.7, or 2.6 W/kg) and received three lipopolysaccharide (LPS) intra-peritoneal injections (0 or 80 μg/kg). Scores in the prepulse startle inhibition, fear conditioning, open field, and elevated plus maze were assessed at adolescence and adulthood. Glial fibrillary acidic protein (GFAP) and interleukines-1β (ILs) were quantified. LPS induced a SAR-dependent reduction of the prepulse startle inhibition in adults. Activity in the open field was reduced at 2.6 W/kg at adolescence. GFAP and ILs, emotional memory, and anxiety-related behaviors were not modified. These data support the hypothesis that maternal immune activation increased the developmental RF exposure-induced long-term neurobiological impairments. These data support the fact that fetuses who receive combined environmental exposures with RF need special attention for protection.
Collapse
Affiliation(s)
- Nicolas Petitdant
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Anthony Lecomte
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Franck Robidel
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Christelle Gamez
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Kelly Blazy
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Anne-Sophie Villégier
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France.
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France.
- Unité de Toxicologie Expérimentale, Parc Technologique ALATA, Institut National de l'Environnement Industriel et des Risques, BP no. 2, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
9
|
Zhang JP, Zhang KY, Guo L, Chen QL, Gao P, Wang T, Li J, Guo GZ, Ding GR. Effects of 1.8 GHz Radiofrequency Fields on the Emotional Behavior and Spatial Memory of Adolescent Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1344. [PMID: 29113072 PMCID: PMC5707983 DOI: 10.3390/ijerph14111344] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
Abstract
The increasing use of mobile phones by teenagers has raised concern about the cognitive effects of radiofrequency (RF) fields. In this study, we investigated the effects of 4-week exposure to a 1.8 GHz RF field on the emotional behavior and spatial memory of adolescent male mice. Anxiety-like behavior was evaluated by open field test (OFT) and elevated plus maze (EPM) test, while depression-like behavior was evaluated by sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST). The spatial learning and memory ability were evaluated by Morris water maze (MWM) experiments. The levels of amino acid neurotransmitters were determined by liquid chromatography-mass spectrometry (LC-MS). The histology of the brain was examined by hematoxylin-eosin (HE) staining. It was found that the depression-like behavior, spatial memory ability and histology of the brain did not change obviously after RF exposure. However, the anxiety-like behavior increased in mice, while, the levels of γ-aminobutyric acid (GABA) and aspartic acid (Asp) in cortex and hippocampus significantly decreased after RF exposure. These data suggested that RF exposure under these conditions do not affect the depression-like behavior, spatial memory and brain histology in adolescent male mice, but it may however increase the level of anxiety, and GABA and Asp were probably involved in this effect.
Collapse
Affiliation(s)
- Jun-Ping Zhang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Ke-Ying Zhang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Ling Guo
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Qi-Liang Chen
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Peng Gao
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Tian Wang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Jing Li
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Guo-Zhen Guo
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Gui-Rong Ding
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| |
Collapse
|
10
|
Lameth J, Gervais A, Colin C, Lévêque P, Jay TM, Edeline JM, Mallat M. Acute Neuroinflammation Promotes Cell Responses to 1800 MHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotox Res 2017; 32:444-459. [PMID: 28578480 DOI: 10.1007/s12640-017-9756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023]
Abstract
Mobile phone communications are conveyed by radiofrequency (RF) electromagnetic fields, including pulse-modulated global system for mobile communications (GSM)-1800 MHz, whose effects on the CNS affected by pathological states remain to be specified. Here, we investigated whether a 2-h head-only exposure to GSM-1800 MHz could impact on a neuroinflammatory reaction triggered by lipopolysaccharide (LPS) in 2-week-old or adult rats. We focused on the cerebral cortex in which the specific absorption rate (SAR) of RF averaged 2.9 W/kg. In developing rats, 24 h after GSM exposure, the levels of cortical interleukin-1ß (IL1ß) or NOX2 NADPH oxidase transcripts were reduced by 50 to 60%, in comparison with sham-exposed animals (SAR = 0), as assessed by RT-qPCR. Adult rats exposed to GSM also showed a 50% reduction in the level of IL1ß mRNA, but they differed from developing rats by the lack of NOX2 gene suppression and by displaying a significant growth response of microglial cell processes imaged in anti-Iba1-stained cortical sections. As neuroinflammation is often associated with changes in excitatory neurotransmission, we evaluated changes in expression and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult cerebral cortex by Western blot analyses. We found that GSM exposure decreased phosphorylation at two residues on the GluA1 AMPAR subunit (serine 831 and 845). The GSM-induced changes in gene expressions, microglia, and GluA1 phosphorylation did not persist 72 h after RF exposure and were not observed in the absence of LPS pretreatment. Together, our data provide evidence that GSM-1800 MHz can modulate CNS cell responses triggered by an acute neuroinflammatory state.
Collapse
Affiliation(s)
- Julie Lameth
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Annie Gervais
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Catherine Colin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Philippe Lévêque
- Université de Limoges, CNRS, XLIM, UMR 7252, 123 avenue Albert Thomas, F-87000, Limoges, France
| | - Thérèse M Jay
- Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR_S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Jean-Marc Edeline
- Paris Saclay Institute of Neuroscience, Neuro-PSI, UMR 9197 CNRS, Université Paris-Sud, 91405, Orsay cedex, France
| | - Michel Mallat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France.
| |
Collapse
|
11
|
Barthélémy A, Mouchard A, Bouji M, Blazy K, Puigsegur R, Villégier AS. Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25343-25355. [PMID: 27696165 DOI: 10.1007/s11356-016-7758-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The widespread mobile phone use raises concerns on the possible cerebral effects of radiofrequency electromagnetic fields (RF EMF). Reactive astrogliosis was reported in neuroanatomical structures of adaptive behaviors after a single RF EMF exposure at high specific absorption rate (SAR, 6 W/kg). Here, we aimed to assess if neuronal injury and functional impairments were related to high SAR-induced astrogliosis. In addition, the level of beta amyloid 1-40 (Aβ 1-40) peptide was explored as a possible toxicity marker. Sprague Dawley male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for 45 min at 6 W/kg. Memory, emotionality, and locomotion were tested in the fear conditioning, the elevated plus maze, and the open field. Glial fibrillary acidic protein (GFAP, total and cytosolic fractions), myelin basic protein (MBP), and Aβ1-40 were quantified in six brain areas using enzyme-linked immunosorbent assay. According to our data, total GFAP was increased in the striatum (+114 %) at 1.5 W/kg. Long-term memory was reduced, and cytosolic GFAP was increased in the hippocampus (+119 %) and in the olfactory bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1-40 expression modification was shown. Our data corroborates previous studies indicating RF EMF-induced astrogliosis. This study suggests that RF EMF-induced astrogliosis had functional consequences on memory but did not demonstrate that it was secondary to neuronal damage.
Collapse
Affiliation(s)
- Amélie Barthélémy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Amandine Mouchard
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Maladies Neurodégénératives CNRS UMR5293 Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Bouji
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Campus des sciences et technologies, Université Saint-Joseph, Dekwaneh, Mar Roukos, Lebanon
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France
| | - Renaud Puigsegur
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Sous-direction de la police technique et scientifique, 31 Avenue Franklin Roosevelt, 69130, Ecully, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France.
| |
Collapse
|
12
|
Neurobiological effects of repeated radiofrequency exposures in male senescent rats. Biogerontology 2016; 17:841-857. [DOI: 10.1007/s10522-016-9654-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022]
|