1
|
Kirimoto H, Watanabe T, Kubo N, Date S, Sunagawa T, Mima T, Ogata K, Nakazono H, Tobimatsu S, Oliviero A. Influence of Static Magnetic Field Stimulation on the Accuracy of Tachystoscopically Presented Line Bisection. Brain Sci 2020; 10:brainsci10121006. [PMID: 33352946 PMCID: PMC7766566 DOI: 10.3390/brainsci10121006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Transcranial static magnetic stimulation (tSMS) has been known to reduce human cortical excitability. Here, we investigated whether tSMS would modulate visuo-spatial cognition in healthy humans. Subjects performed a visuo-spatial task requiring judgements about the symmetry of pre-bisected lines. Visual stimuli consisted of symmetrically or asymmetrically transected lines, tachystoscopically presented for 150 ms on a computer monitor. Task performance was examined before, immediately after, and 10 min after tSMS/sham stimulation of 20 min over the posterior parietal cortex (PPC: P4 from the international 10-20 system) or superior temporal gyrus (STG: C6). Nine out of 16 subjects misjudged pre-bisected lines by consistently underestimating the length of the right-side segment (judging lines to be exactly pre-bisected when the transector was located to the left of the midpoint, or judging the left-side segment to be longer when the transector was located at the midpoint). In these subjects showing a leftward bias, tSMS over the right STG reduced the magnitude of the leftward bias. This did not occur with tSMS over the right PPC or sham stimulation. In the remaining right-biased subjects, no intervention effect was observed with any stimulation. Our findings indicate that application of tSMS over the right STG modulates visuo-spatial cognition in healthy adults.
Collapse
Affiliation(s)
- Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (T.W.); (N.K.)
- Correspondence:
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (T.W.); (N.K.)
| | - Nami Kubo
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (T.W.); (N.K.)
| | - Shota Date
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (S.D.); (T.S.)
| | - Toru Sunagawa
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (S.D.); (T.S.)
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto 6038577, Japan;
| | - Katsuya Ogata
- Department of Speech and Hearing Sciences, Faculty of Health and Medical Sciences, International University of Health and Welfare, Fukuoka 8318501, Japan;
| | - Hisato Nakazono
- Department of Occupational Therapy, Fukuoka International University of Health and Welfare, Fukuoka 8140001, Japan; (H.N.); (S.T.)
| | - Shozo Tobimatsu
- Department of Occupational Therapy, Fukuoka International University of Health and Welfare, Fukuoka 8140001, Japan; (H.N.); (S.T.)
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Paraple’jicos, SESCAM, 45071 Toledo, Spain;
| |
Collapse
|
2
|
Lacroix A, Proulx-Bégin L, Hamel R, De Beaumont L, Bernier PM, Lepage JF. Static magnetic stimulation of the primary motor cortex impairs online but not offline motor sequence learning. Sci Rep 2019; 9:9886. [PMID: 31285526 PMCID: PMC6614538 DOI: 10.1038/s41598-019-46379-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Static magnetic fields (SMFs) are known to alter neural activity, but evidence of their ability to modify learning-related neuroplasticity is lacking. The present study tested the hypothesis that application of static magnetic stimulation (SMS), an SMF applied transcranially via a neodymium magnet, over the primary motor cortex (M1) would alter learning of a serial reaction time task (SRTT). Thirty-nine participants took part in two experimental sessions separated by 24 h where they had to learn the SRTT with their right hand. During the first session, two groups received SMS either over contralateral (i.e., left) or ipsilateral (i.e., right) M1 while a third group received sham stimulation. SMS was not applied during the second session. Results of the first session showed that application of SMS over contralateral M1 impaired online learning as compared to both ipsilateral and sham groups, which did not differ. Results further revealed that application of SMS did not impair offline learning or relearning. Overall, these results are in line with those obtained using other neuromodulatory techniques believed to reduce cortical excitability in the context of motor learning and suggest that the ability of SMS to alter learning-related neuroplasticity is temporally circumscribed to the duration of its application.
Collapse
Affiliation(s)
- Angélina Lacroix
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada.,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada
| | - Léa Proulx-Bégin
- Department of Psychology, Montreal University, 90 Ave. Vincent d'Indy, Montréal, Canada
| | - Raphaël Hamel
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada.,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada.,Faculty of Physical Activity Sciences, Sherbrooke University, 2500 de l'Université Blvd., Sherbrooke, Canada
| | - Louis De Beaumont
- Department of Surgery, Faculty of Medicine, Pavillon Roger-Gaudry C.P, 6128, Montréal, Canada
| | - Pierre-Michel Bernier
- Faculty of Physical Activity Sciences, Sherbrooke University, 2500 de l'Université Blvd., Sherbrooke, Canada
| | - Jean-François Lepage
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada. .,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada.
| |
Collapse
|