1
|
Kasprzycka W, Trębińska-Stryjewska A, Lewandowski RB, Stępińska M, Osuchowska PN, Dobrzyńska M, Achour Y, Osuchowski ŁP, Starzyński J, Mierczyk Z, Trafny EA. Nanosecond Pulsed Electric Field Only Transiently Affects the Cellular and Molecular Processes of Leydig Cells. Int J Mol Sci 2021; 22:ijms222011236. [PMID: 34681896 PMCID: PMC8541366 DOI: 10.3390/ijms222011236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to verify whether the nanosecond pulsed electric field, not eliciting thermal effects, permanently changes the molecular processes and gene expression of Leydig TM3 cells. The cells were exposed to a moderate electric field (80 quasi-rectangular shape pulses, 60 ns pulse width, and an electric field of 14 kV/cm). The putative disturbances were recorded over 24 h. After exposure to the nanosecond pulsed electric field, a 19% increase in cell diameter, a loss of microvilli, and a 70% reduction in cell adhesion were observed. Some cells showed the nonapoptotic externalization of phosphatidylserine through the pores in the plasma membrane. The cell proportion in the subG1 phase increased by 8% at the expense of the S and G2/M phases, and the DNA was fragmented in a small proportion of the cells. The membrane mitochondrial potential and superoxide content decreased by 37% and 23%, respectively. Microarray’s transcriptome analysis demonstrated a negative transient effect on the expression of genes involved in oxidative phosphorylation, DNA repair, cell proliferation, and the overexpression of plasma membrane proteins. We conclude that nanosecond pulsed electric field affected the physiology and gene expression of TM3 cells transiently, with a noticeable heterogeneity of cellular responses.
Collapse
Affiliation(s)
- Wiktoria Kasprzycka
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Alicja Trębińska-Stryjewska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Rafał Bogdan Lewandowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Małgorzata Stępińska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Paulina Natalia Osuchowska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Monika Dobrzyńska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Yahia Achour
- Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; (Y.A.); (J.S.)
| | - Łukasz Paweł Osuchowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Jacek Starzyński
- Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; (Y.A.); (J.S.)
| | - Zygmunt Mierczyk
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Elżbieta Anna Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
- Correspondence:
| |
Collapse
|
2
|
Xu J, Liu K, Chen T, Zhan T, Ouyang Z, Wang Y, Liu W, Zhang X, Sun Y, Xu G, Wang X. Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans. Aging (Albany NY) 2019; 11:10385-10408. [PMID: 31757933 PMCID: PMC6914427 DOI: 10.18632/aging.102466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023]
Abstract
The biological effects of magnetic fields are a research hotspot in the field of biomedical engineering. In this study, we further investigated the effects of a rotating magnetic field (RMF; 0.2 T, 4 Hz) on the growth of human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. The results showed that RMF exposure prolonged the lifespan of C. elegans and slowed the aging of HUVECs. RMF treatment of HUVECs showed that activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) was associated with decreased mitochondrial membrane potential (MMP) due to increased intracellular Ca2+ concentrations induced by endoplasmic reticulum stress in anti-aging mechanisms. RMF also promoted the health status of C. elegans by improving activity, reducing age-related pigment accumulation, delaying Aβ-induced paralysis and increasing resistance to heat and oxidative stress. The prolonged lifespan of C. elegans was associated with decreased levels of daf-16 which related to the insulin/insulin-like growth factor signaling pathway (IIS) activity and reactive oxygen species (ROS), whereas the heat shock transcription factor-1 (hsf-1) pathway was not involved. Moreover, the level of autophagy was increased after RMF treatment. These findings expand our understanding of the potential mechanisms by which RMF treatment prolongs lifespan.
Collapse
Affiliation(s)
- Jiangyao Xu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Kan Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518055, China
| | - Tianying Zhan
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Zijun Ouyang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Yushu Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaoyun Zhang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518055, China
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
3
|
Cellular Processes Involved in Jurkat Cells Exposed to Nanosecond Pulsed Electric Field. Int J Mol Sci 2019; 20:ijms20235847. [PMID: 31766457 PMCID: PMC6929111 DOI: 10.3390/ijms20235847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, nanosecond pulsed electric field (nsPEF) has been considered as a new tool for tumor therapy, but its molecular mechanism of function remains to be fully elucidated. Here, we explored the cellular processes of Jurkat cells exposed to nanosecond pulsed electric field. Differentially expressed genes (DEGs) were acquired from the GEO2R, followed by analysis with a series of bioinformatics tools. Subsequently, 3D protein models of hub genes were modeled by Modeller 9.21 and Rosetta 3.9. Then, a 100 ns molecular dynamics simulation for each hub protein was performed with GROMACS 2018.2. Finally, three kinds of nsPEF voltages (0.01, 0.05, and 0.5 mV/mm) were used to simulate the molecular dynamics of hub proteins for 100 ns. A total of 1769 DEGs and eight hub genes were obtained. Molecular dynamic analysis, including root mean square deviation (RMSD), root mean square fluctuation (RMSF), and the Rg, demonstrated that the 3D structure of hub proteins was built, and the structural characteristics of hub proteins under different nsPEFs were acquired. In conclusion, we explored the effect of nsPEF on Jurkat cell signaling pathway from the perspective of molecular informatics, which will be helpful in understanding the complex effects of nsPEF on acute T-cell leukemia Jurkat cells.
Collapse
|