1
|
Tian L, Luo Y, Ren J, Zhao C. The Role of Oxidative Stress in Hypomagnetic Field Effects. Antioxidants (Basel) 2024; 13:1017. [PMID: 39199261 PMCID: PMC11352208 DOI: 10.3390/antiox13081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
The geomagnetic field (GMF) is crucial for the survival and evolution of life on Earth. The weakening of the GMF, known as the hypomagnetic field (HMF), significantly affects various aspects of life on Earth. HMF has become a potential health risk for future deep space exploration. Oxidative stress is directly involved in the biological effects of HMF on animals or cells. Oxidative stress occurs when there is an imbalance favoring oxidants over antioxidants, resulting in cellular damage. Oxidative stress is a double-edged sword, depending on the degree of deviation from homeostasis. In this review, we summarize the important experimental findings from animal and cell studies on HMF exposure affecting intracellular reactive oxygen species (ROS), as well as the accompanying many physiological abnormalities, such as cognitive dysfunction, the imbalance of gut microbiota homeostasis, mood disorders, and osteoporosis. We discuss new insights into the molecular mechanisms underlying these HMF effects in the context of the signaling pathways related to ROS. Among them, mitochondria are considered to be the main organelles that respond to HMF-induced stress by regulating metabolism and ROS production in cells. In order to unravel the molecular mechanisms of HMF action, future studies need to consider the upstream and downstream pathways associated with ROS.
Collapse
Affiliation(s)
- Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (J.R.); (C.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (J.R.); (C.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (J.R.); (C.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Zhao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (J.R.); (C.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Tota M, Jonderko L, Witek J, Novickij V, Kulbacka J. Cellular and Molecular Effects of Magnetic Fields. Int J Mol Sci 2024; 25:8973. [PMID: 39201657 PMCID: PMC11354277 DOI: 10.3390/ijms25168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, magnetic fields (MFs) have received major attention due to their potential therapeutic applications and biological effects. This review provides a comprehensive analysis of the cellular and molecular impacts of MFs, with a focus on both in vitro and in vivo studies. We investigate the mechanisms by which MFs influence cell behavior, including modifications in gene expression, protein synthesis, and cellular signaling pathways. The interaction of MFs with cellular components such as ion channels, membranes, and the cytoskeleton is analyzed, along with their effects on cellular processes like proliferation, differentiation, and apoptosis. Molecular insights are offered into how MFs modulate oxidative stress and inflammatory responses, which are pivotal in various pathological conditions. Furthermore, we explore the therapeutic potential of MFs in regenerative medicine, cancer treatment, and neurodegenerative diseases. By synthesizing current findings, this article aims to elucidate the complex bioeffects of MFs, thereby facilitating their optimized application in medical and biotechnological fields.
Collapse
Affiliation(s)
- Maciej Tota
- Student Research Group № K148, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Laura Jonderko
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Julia Witek
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
3
|
Tian L, Ren J, Luo Y. The effects of different durations of exposure to hypomagnetic field on the number of active mitochondria and ROS levels in the mouse hippocampus. Biochem Biophys Rep 2024; 38:101696. [PMID: 38586825 PMCID: PMC10995802 DOI: 10.1016/j.bbrep.2024.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Reactive oxygen species (ROS) are one of the potential molecules in response to a hypomagnetic field (HMF), and exposure to an HMF for eight weeks led to an increase in ROS levels in the whole hippocampus area in mice. ROS are mainly derived from the byproducts of mitochondrial metabolism. However, previous in vivo studies mostly focus on the influence of one time point of HMF exposure on the mouse hippocampus and lack comparative studies on the effects of different durations of HMF exposure on the mouse hippocampus. Here, we investigated the effects of different durations of HMF on the number of active mitochondria and ROS levels in mouse hippocampus. Compared with the geomagnetic field (GMF) group, we found that the number of active mitochondria in the hippocampus was significantly reduced during the sixth week of HMF exposure, whereas the number of active mitochondria was significantly reduced and the ROS levels was significantly increased during the eighth week of HMF exposure. The number of active mitochondria gradually decreased and ROS levels gradually increased in both GMF and HMF groups with prolonged exposure time. In addition, the expression level of the PGC-1α gene in the hippocampus, the main regulator of mitochondrial biogenesis, decreased significantly in the eighth week of HMF exposure. These results reveal that the changes in active mitochondria number and ROS levels were dependent on the durations of HMF exposure, and prolonged exposure to HMF exacerbates these changes.
Collapse
Affiliation(s)
- Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Ren
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Doltchinkova V, Lozanova S, Rukova B, Nikolov R, Ivanova E, Roumenin C. Electrokinetic properties of healthy and β-thalassemia erythrocyte membranes under in vitro exposure to static magnetic field. Front Chem 2023; 11:1197210. [PMID: 37927566 PMCID: PMC10620691 DOI: 10.3389/fchem.2023.1197210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: The current understanding of the biological impacts of a static magnetic field (SMF) is restricted to the direct interactions of the magnetic field with biological membranes. The electrokinetic (zeta) potential is an electrochemical property of erythrocyte surfaces which was negatively charged in physiological media after SMF exposure (0.1‒2.0 T). Methods: The novel data about electrokinetic parameters of the erythrocytes is determined by microelectrophoresis after SMF-exposure in norm and heterozygous β-thalassemia. The methods of light scattering, lipid peroxidation, fluorescence microscopy are used. Results: The electrokinetic potential of erythrocytes in norm is increased after SMF intensities due to enhanced negatively exposed charges on the outer surface of the membrane accompanied by an increase in light scattering where changes in cell morphology are observed. Conversely, a decrease in the zeta potential of β-thalassemia erythrocytes upon SMF-treatment was determined because of the reduction in the surface electrical charge of the membranes, where a significant decrease in light scattering at 1.5 T and 2.0 T was recorded. Exposure to SMF (0.5-2.0 T) was associated with an increase in the malondialdehyde content in erythrocytes. Biophysical studies regarding the influence of SMF on the electrostatic free energy of cells shows an increase in negative values in healthy erythrocytes, which corresponds to the implementation of a spontaneous process. This is also the process in β-thalassemia cells after SMF exposure with lower negative values of free electrostatic energy than erythrocytes in norm. Discussion: The effect of static magnetic field (SMF 0.1-2.0 T) on the electrokinetic and morphological characteristics of erythrocytes in norm and β-thalassemia is determined and correlated with the increase/reduction in surface charge and shrinkage/swelling of the cells, respectively. Lipid peroxidation of healthy and β-thalassemia erythrocytes caused an enhancement of lipid peroxidation because of the higher concentrations of TBARS products in cellular suspension. SMF (0.1‒2.0 T) altered the spontaneous chemical processes with negative values of electrostatic free energy of erythrocytes in norm and β-thalassemia accompanied by a lower FITC-Concanavalin A binding affinity to membrane receptors (SMF 2.0 T). The electrokinetic properties of human erythrocytes in norm and β-thalassemia upon SMF treatment and their interrelationship with the structural-functional state of the membrane were reported. The presented work would have future fundamental applications in biomedicine.
Collapse
Affiliation(s)
- Virjinia Doltchinkova
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Siya Lozanova
- Institute of Robotics “St. Ap. and Gospeller Matthew”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Blaga Rukova
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria
| | - Rumin Nikolov
- Faculty of Mechanical Engineering, Technical University, Sofia, Bulgaria
| | - Elitsa Ivanova
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Chavdar Roumenin
- Institute of Robotics “St. Ap. and Gospeller Matthew”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
5
|
Nagwani AK, Budka A, Łacka A, Kaczmarek Ł, Kmita H. The effect of hypomagnetic field on survival and mitochondrial functionality of active Paramacrobiotus experimentalis females and males of different age. Front Physiol 2023; 14:1253483. [PMID: 37745239 PMCID: PMC10514487 DOI: 10.3389/fphys.2023.1253483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Even for tardigrades, often called the toughest animals on Earth, a hypomagnetic field (HMF) is an extreme environment. However, studies on the effect of HMF on tardigrades and other invertebrates are scarce. Mitochondria play an important role in an organism's response to extreme conditions. The effect of HMF on the mitochondrial inner membrane potential (Δψ), a well-known marker of mitochondria functionality, shows that mitochondria are very sensitive to HMF. To measure the HMF effect on Paramacrobiotus experimentalis, we calculated the tardigrade survival rate and Δψ level after HMF treatments of different durations. We also estimated the relationship between the age and sex of the tardigrade and the HMF effect. We observed age- and sex-related differences in Δψ and found that Δψ changes after HMF treatment were dependent on its duration as well as the animal's age and sex. Furthermore, active P. experimentalis individuals displayed a high survival rate after HMF treatment. The data may contribute to the understanding of tardigrade aging and their resistance to extreme conditions including HMF, which in turn may be useful for future space explorations.
Collapse
Affiliation(s)
- Amit Kumar Nagwani
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Agnieszka Łacka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
6
|
Buchachenko AL. Does Biological Longevity Depend on the Magnetic Fields? RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2023. [DOI: 10.1134/s1990793123010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
7
|
Hypomagnetic Fields and Their Multilevel Effects on Living Organisms. Processes (Basel) 2023. [DOI: 10.3390/pr11010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Earth’s magnetic field is one of the basic abiotic factors in all environments, and organisms had to adapt to it during evolution. On some occasions, organisms can be confronted with a significant reduction in a magnetic field, termed a “hypomagnetic field—HMF”, for example, in buildings with steel reinforcement or during interplanetary flight. However, the effects of HMFs on living organisms are still largely unclear. Experimental studies have mostly focused on the human and rodent models. Due to the small number of publications, the effects of HMFs are mostly random, although we detected some similarities. Likely, HMFs can modify cell signalling by affecting the contents of ions (e.g., calcium) or the ROS level, which participate in cell signal transduction. Additionally, HMFs have different effects on the growth or functions of organ systems in different organisms, but negative effects on embryonal development have been shown. Embryonal development is strictly regulated to avoid developmental abnormalities, which have often been observed when exposed to a HMF. Only a few studies have addressed the effects of HMFs on the survival of microorganisms. Studying the magnetoreception of microorganisms could be useful to understand the physical aspects of the magnetoreception of the HMF.
Collapse
|
8
|
Parmagnani AS, Mannino G, Maffei ME. Transcriptomics and Metabolomics of Reactive Oxygen Species Modulation in Near-Null Magnetic Field-Induced Arabidopsis thaliana. Biomolecules 2022; 12:biom12121824. [PMID: 36551252 PMCID: PMC9775259 DOI: 10.3390/biom12121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The geomagnetic field (GMF) is a natural component of Earth's biosphere. GMF reduction to near-null values (NNMF) induces gene expression modulation that generates biomolecular, morphological, and developmental changes. Here, we evaluate the effect of NNMF on gene expression and reactive oxygen species (ROS) production in time-course experiments on Arabidopsis thaliana. Plants exposed to NNMF in a triaxial Helmholtz coils system were sampled from 10 min to 96 h to evaluate differentially expressed genes (DEGs) of oxidative stress responses by gene microarray. In 24-96 h developing stages, H2O2 and polyphenols were also analyzed from roots and shoots. A total of 194 DEGs involved in oxidative reactions were selected, many of which showed a fold change ≥±2 in at least one timing point. Heatmap clustering showed DEGs both between roots/shoots and among the different time points. NNMF induced a lower H2O2 than GMF, in agreement with the expression of ROS-related genes. Forty-four polyphenols were identified, the content of which progressively decreased during NNMF exposition time. The comparison between polyphenols content and DEGs showed overlapping patterns. These results indicate that GMF reduction induces metabolomic and transcriptomic modulation of ROS-scavenging enzymes and H2O2 production in A. thaliana, which is paralleled by the regulation of antioxidant polyphenols.
Collapse
|
9
|
Zhan A, Luo Y, Qin H, Lin W, Tian L. Hypomagnetic Field Exposure Affecting Gut Microbiota, Reactive Oxygen Species Levels, and Colonic Cell Proliferation in Mice. Bioelectromagnetics 2022; 43:462-475. [PMID: 36434792 DOI: 10.1002/bem.22427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota has been considered one of the key factors in host health, which is influenced by many environmental factors. The geomagnetic field (GMF) represents one of the important environmental conditions for living organisms. Previous studies have shown that the elimination of GMF, the so-called hypomagnetic field (HMF), could affect the physiological functions and resistance to antibiotics of some microorganisms. However, whether long-term HMF exposure could alter the gut microbiota to some extent in mammals remains unclear. Here, we investigated the effects of long-term (8- and 12-week) HMF exposure on the gut microbiota in C57BL/6J mice. Our results clearly showed that 8-week HMF significantly affected the diversity and function of the mouse gut microbiota. Compared with the GMF group, the concentrations of short-chain fatty acids tended to decrease in the HMF group. Immunofluorescence analysis showed that HMF promoted colonic cell proliferation, concomitant with an increased level of reactive oxygen species (ROS). To our knowledge, this is the first in vivo finding that long-term HMF exposure could affect the mouse gut microbiota, ROS levels, and colonic cell proliferation in the colon. Moreover, the changes in gut microbiota can be restored by returning mice to the GMF environment, thus the possible harm to the microbiota caused by HMF exposure can be alleviated. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aisheng Zhan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huafeng Qin
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Krylov V, Machikhin A, Sizov D, Guryleva A, Sizova A, Zhdanova S, Tchougounov V, Burlakov A. Influence of hypomagnetic field on the heartbeat in zebrafish embryos. Front Physiol 2022; 13:1040083. [PMID: 36338501 PMCID: PMC9634549 DOI: 10.3389/fphys.2022.1040083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
The magnetic environment may influence the functioning of the cardiovascular system. It was reported that low-frequency and static magnetic fields affect hemodynamics, heart rate, and heart rate variability in animals and humans. Moreover, recent data suggest that magnetic fields affect the circadian rhythms of physiological processes. The influence of the magnetic environment on heart functionating during early development has been studied insufficiently. We utilized transparent zebrafish embryos to evaluate the effect of the hypomagnetic field on the characteristics of cardiac function using a noninvasive optical approach based on photoplethysmographic microscopic imaging. The embryos were exposed to the geomagnetic and hypomagnetic fields from the second to the 116th hour post fertilization under a 16 h light/8 h dark cycle or constant illumination. The exposure of embryos to the hypomagnetic field in both lighting modes led to increased embryo mortality, the appearance of abnormal phenotypes, and a significant increase in the embryo’s heartbeat rate. The difference between maximal and minimal heartbeat intervals, maximal to minimal heartbeat intervals ratio, and the coefficient of variation of heartbeat rate were increased in the embryos exposed to the hypomagnetic field under constant illumination from 96 to 116 h post fertilization. The dynamics of heartbeat rate changes followed a circadian pattern in all studied groups except zebrafish exposed to the hypomagnetic field under constant illumination. The results demonstrate the importance of natural magnetic background for the early development of zebrafish. The possible mechanisms of observed effects are discussed.
Collapse
Affiliation(s)
- Viacheslav Krylov
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- *Correspondence: Viacheslav Krylov,
| | - Alexander Machikhin
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Daniil Sizov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Anastasia Guryleva
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Sizova
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Svetlana Zhdanova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Vladimir Tchougounov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexander Burlakov
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Zhang Y, Zeng L, Wei Y, Zhang M, Pan W, Sword GA, Yang F, Chen F, Wan G. Reliable reference genes for gene expression analyses under the hypomagnetic field in a migratory insect. Front Physiol 2022; 13:954228. [PMID: 36003646 PMCID: PMC9393789 DOI: 10.3389/fphys.2022.954228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Manipulating the hypomagnetic field (HMF), which is the absence or significant weakening (<5 μT) of the geomagnetic field (GMF), offers a unique tool to investigate magnetic field effects on organismal physiology, development, behavior and life history. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) has been utilized to study changes in gene expression associated with exposure to the HMF. However, selecting appropriate reference genes (RGs) with confirmed stable expression across environments for RT-qPCR is often underappreciated. Using three algorithms (BestKeeper, NormFinder, and GeNorm), we investigated the expression stability of eight candidate RGs when exposed to the HMF condition versus local GMF during developmental from juveniles to adults in the migratory insect pest, the brown planthopper Nilaparvata lugens. During the nymphal stage, RPL5 & α-TUB1, EF1-α & ARF1, RPL5 & AK, EF1-α & RPL5, and ARF1 & AK were suggested as the most stable RG sets in the 1st to 5th instars, respectively. For 1- to 3-day-old adults, AK & ARF1, AK & α-TUB1, AK & ARF1 and EF1-α & RPL5, AK & α-TUB1, AK & EF1-α were the optimal RG sets for macropterous and brachypterous females, respectively. ACT1 & RPL5, RPL5 & EF1-α, α-TUB1 & ACT1 and EF1-α & RPL5, ARF1 & ACT1, ACT1 & ARF1 were the optimal RG sets for macropterous and brachypterous males, respectively. These results will facilitate accurate gene expression analyses under the HMF in N. lugens. The verification approach illustrated in this study highlights the importance of identifying reliable RGs for future empirical studies of magnetobiology (including magnetoreception) that involve magnetic field intensity as a factor.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Luying Zeng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Yongji Wei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Guijun Wan,
| |
Collapse
|
12
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
13
|
Influence of a Constant Magnetic Field on the Mechanism of Adrenaline Oxidation. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8070070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to establish the role of the magnetic effect in the key stages of the autoxidation and initiated oxidation radical-chain reactions, the experimental data and kinetic analysis of the influence of a magnetic field on the oxidative transformations of adrenaline are presented in this work. In the case of autoxidation, the process is being controlled by the rate of adrenaline consumption in the gross process of quinoid oxidation. The analysis of the obtained results is estimative and is based on the assumption of the leading role of superoxide radical during the autoxidation. Superoxide radical concentration increases with the increase in the applied magnetic field strength, which leads to the decrease in the rate of initiation of the quinoid process. In the case of initiated oxidation, the results obtained are based on the known radical-chain mechanism, and they were interpreted using the theory of radical pairs. The observed magnetic effect is explained by the influence of a constant magnetic field on the mechanism of chain termination of radical-chain oxidation and/or initiation of the autoxidation process.
Collapse
|
14
|
Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A quantum-chemical analysis of the effect of a constant magnetic field on radical formation in the processes of chain oxidation of organic compounds by molecular oxygen is presented. The calculation of the total electronic energies and thermodynamic functions of the compounds involved in the reactions was performed by the density functional method with the hybrid exchange-correlation functional of Becke, Lee, Yang and Parr DFT B3LYP/6-311G** using the NWChem software package. The effect of the magnetic field on the individual stages of chain oxidation is associated with the evolution of radical pairs. It is assumed that the dipole–dipole interaction in a radical pair is not averaged by the diffusion of radicals and should be taken into account. To a large extent, the magnetic field effect (MFE) value is influenced by the ratio between the relaxation time of the oscillatory-excited state in the radical pair (tvib) and the relaxation time of the inter-combination transitions (tst). Although the developed technique refers to liquid-phase reactions, it can be used to study the MFE for oxidation of biologically significant compounds in multiphase systems, such as micelles, liposomes and membranes.
Collapse
|
15
|
Shaev IA, Novikov VV, Yablokova EV, Fesenko EE. A Brief Review of the Current State of Research on the Biological Effects of Weak Magnetic Fields. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Tian L, Luo Y, Zhan A, Ren J, Qin H, Pan Y. Hypomagnetic Field Induces the Production of Reactive Oxygen Species and Cognitive Deficits in Mice Hippocampus. Int J Mol Sci 2022; 23:ijms23073622. [PMID: 35408982 PMCID: PMC8998670 DOI: 10.3390/ijms23073622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Previous studies have found that hypomagnetic field (HMF) exposure impairs cognition behaviors in animals; however, the underlying neural mechanisms of cognitive dysfunction are unclear. The hippocampus plays important roles in magnetoreception, memory, and spatial navigation in mammals. Therefore, the hippocampus may be the key region in the brain to reveal its neural mechanisms. We recently reported that long-term HMF exposure impairs adult hippocampal neurogenesis and cognition through reducing endogenous reactive oxygen species (ROS) levels in adult neural stem cells that are confined in the subgranular zone (SGZ) of the hippocampus. In addition to adult neural stem cells, the redox state of other cells in the hippocampus is also an important factor affecting the functions of the hippocampus. However, it is unclear whether and how long-term HMF exposure affects ROS levels in the entire hippocampus (i.e., the dentate gyrus (DG) and ammonia horn (CA) regions). Here, we demonstrate that male C57BL/6J mice exposed to 8-week HMF exhibit cognitive impairments. We then found that the ROS levels of the hippocampus were significantly higher in these HMF-exposed mice than in the geomagnetic field (GMF) group. PCR array analysis revealed that the elevated ROS levels were due to HMF-regulating genes that maintain the redox balance in vivo, such as Nox4, Gpx3. Since high levels of ROS may cause hippocampal oxidative stress, we suggest that this is another reason why HMF exposure induces cognitive impairment, besides the hippocampal neurogenesis impairments. Our study further demonstrates that GMF plays an important role in maintaining hippocampal function by regulating the appropriate endogenous ROS levels.
Collapse
Affiliation(s)
- Lanxiang Tian
- Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (A.Z.); (J.R.); (Y.P.)
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
- The Paleomagnetism and Geochronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Correspondence:
| | - Yukai Luo
- Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (A.Z.); (J.R.); (Y.P.)
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aisheng Zhan
- Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (A.Z.); (J.R.); (Y.P.)
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (A.Z.); (J.R.); (Y.P.)
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huafeng Qin
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
- The Paleomagnetism and Geochronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yongxin Pan
- Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (A.Z.); (J.R.); (Y.P.)
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
- The Paleomagnetism and Geochronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wang GM, Fu JP, Mo WC, Zhang HT, Liu Y, He RQ. Shielded geomagnetic field accelerates glucose consumption in human neuroblastoma cells by promoting anaerobic glycolysis. Biochem Biophys Res Commun 2022; 601:101-108. [PMID: 35240496 DOI: 10.1016/j.bbrc.2022.01.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
A shielded geomagnetic field, also called the hypomagnetic field (HMF), interferes with the metabolic processes of various cells and animals exhibiting diverse effects in different models, however, its underlying mechanism remains largely unknown. In this study, we assessed the effect on the energy metabolism of SH-SY5Y cells in HMF and found that HMF-induced cell proliferation depends on glucose supply. HMF promoted SH-SY5Y cell proliferation by increasing glucose consumption rate via up-regulating anaerobic glycolysis in the cells. Increased activity of LDH, a key member of glycolysis, was possibly a direct response to HMF-induced cell proliferation. Thus, we unveiled a novel subcellular mechanism underlying the HMF-induced cellular response: the up-regulation of anaerobic glycolysis and repression of oxidative stress shifted cellular metabolism more towards the Warburg effect commonly observed in cancer metabolism. We suggest that cellular metabolic profiles of various cell types may determine HMF-induced cellular effects, and a magnetic field can be applied as a non-invasive regulator of cell metabolism.
Collapse
Affiliation(s)
- Guo-Mi Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jing-Peng Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Wei-Chuan Mo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Hai-Tao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Rong-Qiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Novikov VV, Yablokova EV, Shaev IA, Fesenko EE. The Kinetics of the Production of Reactive Oxygen Species by Neutrophils after Incubation in a Hypomagnetic Field. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092103012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|