1
|
L Pall M. Low Intensity Electromagnetic Fields Act via Voltage-Gated Calcium Channel (VGCC) Activation to Cause Very Early Onset Alzheimer's Disease: 18 Distinct Types of Evidence. Curr Alzheimer Res 2022; 19:119-132. [PMID: 35114921 PMCID: PMC9189734 DOI: 10.2174/1567205019666220202114510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
Electronically generated electromagnetic fields (EMFs) including those used in wireless communication such as cell phones, Wi-Fi and smart meters, are coherent, producing very high electric and magnetic forces which act on the voltage sensor of voltage-gated calcium channels to produce increases in intracellular calcium [Ca2+]i. The calcium hypothesis of Alzheimer's disease (AD) has shown that each of the important AD-specific and nonspecific causal elements are produced by excessive [Ca2+]i. [Ca2+]i acts in AD via excessive calcium signaling and the peroxynitrite/oxidative stress/inflammation pathway which are each elevated by EMFs. An apparent vicious cycle in AD involves amyloid-beta protein (A) and [Ca2+]i. Three types of epidemiology each suggest EMF causation of AD including early onset AD. Extensive animal model studies show that low intensity EMFs cause neurodegeneration including AD, with AD animals having elevated levels of A, amyloid precursor protein and BACE1. Rats exposed to pulsed EMFs every day are reported to develop universal or near universal very very very early onset neurodegeneration including AD; these findings are superficially similar to humans with digital dementia. EMFs producing modest increases in [Ca2+]i can also produce protective, therapeutic effects. The therapeutic pathway and peroxynitrite pathway inhibit each other. A summary of 18 different findings is provided, which collectively provide powerful evidence for EMF causation of AD. The author is concerned that smarter, more highly pulsed "smart" wireless communication may cause widespread very, very early onset AD in human populations.
Collapse
Affiliation(s)
- Martin L Pall
- Professor Emeritus of Biochemistry & Basic Medical Sciences Washington State University Mailing Address: 638 NE 41stst Ave., Portland OR 97232, USA
| |
Collapse
|
2
|
Dagro AM, Wilkerson JW, Thomas TP, Kalinosky BT, Payne JA. Computational modeling investigation of pulsed high peak power microwaves and the potential for traumatic brain injury. SCIENCE ADVANCES 2021; 7:eabd8405. [PMID: 34714682 PMCID: PMC8555891 DOI: 10.1126/sciadv.abd8405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
When considering safety standards for human exposure to radiofrequency (RF) and microwave energy, the dominant concerns pertain to a thermal effect. However, in the case of high-power pulsed RF/microwave energy, a rapid thermal expansion can lead to stress waves within the body. In this study, a computational model is used to estimate the temperature profile in the human brain resulting from exposure to various RF/microwave incident field parameters. The temperatures are subsequently used to simulate the resulting mechanical response of the brain. Our simulations show that, for certain extremely high-power microwave exposures (permissible by current safety standards), very high stresses may occur within the brain that may have implications for neuropathological effects. Although the required power densities are orders of magnitude larger than most real-world exposure conditions, they can be achieved with devices meant to emit high-power electromagnetic pulses in military and research applications.
Collapse
Affiliation(s)
- Amy M. Dagro
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Justin W. Wilkerson
- J. Mike ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | - Benjamin T. Kalinosky
- General Dynamics Information Technology, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | - Jason A. Payne
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| |
Collapse
|
3
|
Lai YF, Wang HY, Peng RY. Establishment of injury models in studies of biological effects induced by microwave radiation. Mil Med Res 2021; 8:12. [PMID: 33597038 PMCID: PMC7890848 DOI: 10.1186/s40779-021-00303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment, and military applications. Microwave radiation may cause injuries to both the structures and functions of various organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health. Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation. The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Yun-Fei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
4
|
Chemeris NK, Gapeyev AB, Sirota NP, Gudkova OY, Tankanag AV, Konovalov IV, Buzoverya ME, Suvorov VG, Logunov VA. Lack of direct DNA damage in human blood leukocytes and lymphocytes after in vitro exposure to high power microwave pulses. Bioelectromagnetics 2006; 27:197-203. [PMID: 16304702 DOI: 10.1002/bem.20196] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Currently, the potential genotoxicity of high power microwave pulses (HPMP) is not clear. Using the alkaline single cell gel electrophoresis assay, also known as the alkaline comet assay, we studied the effects of HPMP (8.8 GHz, 180 ns pulse width, peak power 65 kW, pulse repetition frequency 50 Hz) on DNA of human whole-blood leukocytes and isolated lymphocytes. The cell suspensions were exposed to HPMP for 40 min in a rectangular waveguide. The average SAR calculated from the temperature kinetics was about 1.6 kW/kg (peak SAR was about 300 MW/kg). The steady-state temperature rise in the 50 microl samples exposed to HPMP was 3.5 +/- 0.1 degrees C. In independent experiments, we did not find any statistically significant DNA damage manifested immediately after in vitro HPMP exposure of human blood leukocytes or lymphocytes or after HPMP exposure of leukocytes subsequently incubated at 37 degrees C for 30 min. Our results indicate that HPMP under the given exposure conditions did not induce DNA strand breaks, alkali-labile sites, and incomplete excision repair sites, which could be detected by the alkaline comet assay.
Collapse
Affiliation(s)
- N K Chemeris
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sylvester PW, Shah SJ, Haynie DT, Briski KP. Effects of ultra-wideband electromagnetic pulses on pre-neoplastic mammary epithelial cell proliferation. Cell Prolif 2005; 38:153-63. [PMID: 15985060 PMCID: PMC6496383 DOI: 10.1111/j.1365-2184.2005.00340.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Electromagnetic ultra-wideband pulses (UWB) or nanopulses, are generated by a wide range of electronic devices used in communications and radar technology. However, the specific effects of nanopulse exposure on cell growth and function have not been extensively investigated. Here, studies have been conducted to determine the effects of prolonged exposure to non-ionizing, low to moderate intensity nanopulses on the growth of pre-neoplastic CL-S1 mammary epithelial cells in vitro. Cells were grown in culture and maintained in serum-free defined medium containing 10 ng/ml EGF and 10 microg/ml insulin as comitogens. Studies showed that 0.25-3.0 h exposure to nanopulses of 18 kV/m field intensity, 1 kHz repetition rate and 10 ns pulse width had no effect on CL-S1 cell growth or viability during the subsequent 72-h culture period. However, exposure to similar nanopulses for prolonged periods of time (4-6 h) resulted in a significant increase in cell proliferation, as compared to untreated controls. Additional studies showed that nanopulse exposure enhanced CL-S1 cell growth when cells were maintained in media containing only EGF, but had no effect on cells maintained in defined media that were mitogen-free or containing only insulin. Studies also showed that the growth-promoting effects of nanopulse exposure were associated with a relatively large increase in intracellular levels of phospho-MEK1 (active) and phospho-ERK1/2 (active) in these cells. These findings demonstrate that prolonged exposure to moderate levels of UWB enhanced EGF-dependent mitogenesis, and that this growth-promoting effect appears to be mediated by enhanced activation of the mitogen-activated protein kinase (MAPK) signalling pathway in pre-neoplastic CL-S1 mammary epithelial cells.
Collapse
Affiliation(s)
- P W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0470, USA.
| | | | | | | |
Collapse
|
6
|
Hart FX, Easterly CE. An analytical model for the calculation of the change in transmembrane potential produced by an ultrawideband electromagnetic pulse. Bioelectromagnetics 2004; 25:251-9. [PMID: 15114634 DOI: 10.1002/bem.10196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The electric field pulse shape and change in transmembrane potential produced at various points within a sphere by an intense, ultrawideband pulse are calculated in a four stage, analytical procedure. Spheres of two sizes are used to represent the head of a human and the head of a rat. In the first stage, the pulse is decomposed into its Fourier components. In the second stage, Mie scattering analysis (MSA) is performed for a particular point in the sphere on each of the Fourier components, and the resulting electric field pulse shape is obtained for that point. In the third stage, the long wavelength approximation (LWA) is used to obtain the change in transmembrane potential in a cell at that point. In the final stage, an energy analysis is performed. These calculations are performed at 45 points within each sphere. Large electric fields and transmembrane potential changes on the order of a millivolt are produced within the brain, but on a time scale on the order of nanoseconds. The pulse shape within the brain differs considerably from that of the incident pulse. Comparison of the results for spheres of different sizes indicates that scaling of such pulses across species is complicated.
Collapse
Affiliation(s)
- Francis X Hart
- The Department of Physics, The University of the South, Sewanee, Tennessee 37383, USA.
| | | |
Collapse
|
7
|
Abstract
The human auditory response to pulses of radiofrequency (RF) energy, commonly called RF hearing, is a well established phenomenon. RF induced sounds can be characterized as low intensity sounds because, in general, a quiet environment is required for the auditory response. The sound is similar to other common sounds such as a click, buzz, hiss, knock, or chirp. Effective radiofrequencies range from 2.4 to 10000 MHz, but an individual's ability to hear RF induced sounds is dependent upon high frequency acoustic hearing in the kHz range above about 5 kHz. The site of conversion of RF energy to acoustic energy is within or peripheral to the cochlea, and once the cochlea is stimulated, the detection of RF induced sounds in humans and RF induced auditory responses in animals is similar to acoustic sound detection. The fundamental frequency of RF induced sounds is independent of the frequency of the radiowaves but dependent upon head dimensions. The auditory response has been shown to be dependent upon the energy in a single pulse and not on average power density. The weight of evidence of the results of human, animal, and modeling studies supports the thermoelastic expansion theory as the explanation for the RF hearing phenomenon. RF induced sounds involve the perception via bone conduction of thermally generated sound transients, that is, audible sounds are produced by rapid thermal expansion resulting from a calculated temperature rise of only 5 x 10(-6) degrees C in tissue at the threshold level due to absorption of the energy in the RF pulse. The hearing of RF induced sounds at exposure levels many orders of magnitude greater than the hearing threshold is considered to be a biological effect without an accompanying health effect. This conclusion is supported by a comparison of pressure induced in the body by RF pulses to pressure associated with hazardous acoustic energy and clinical ultrasound procedures.
Collapse
Affiliation(s)
- J A Elder
- Motorola Florida Research Laboratories, Ft Lauderdale, FL 33322, USA.
| | | |
Collapse
|
8
|
Natarajan M, Szilagyi M, Roldan FN, Meltz ML. NF-kappaB DNA-binding activity after high peak power pulsed microwave (8.2 GHz) exposure of normal human monocytes. Bioelectromagnetics 2002; 23:271-7. [PMID: 11948606 DOI: 10.1002/bem.10018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis investigated is that exposure of a mammalian cell to high peak power pulsed RF, at the frequency of 8.2 GHz, can result in the activation of an important eukaryotic transcriptional regulator, nuclear factor kappa B (NF-kappaB). This DNA-binding protein controls genes involved in long term cellular regulation. The selection of 8.2 GHz was based on the availability of a high peak power pulsed RF transmitter. In these studies, triplicate cultures of human monocytes (Mono Mac-6) were exposed to the pulsed wave radiation. The peak to average power ratio was 455:1 (2.2 micros pulse width and pulse repetition rate of 1000 pulses/s). The average power density at the position of exposure was 50 W/m(2), and the mean SAR at the bottom of the culture flask was 10.8 +/- 7.1 W/kg. The FDTD analysis indicated that 10% of the cells had an SAR of 22-29 W/kg. The cells were exposed continuously for 90 min at 37 degrees C, reincubated at this temperature, and harvested 4 h postexposure. The nuclear extracts were analyzed by electrophoretic mobility shift assay. The results showed a profound increase (3.6-fold) in the DNA binding activity of NF-kappaB in monocytes at 4 h after the pulsed RF exposure compared to sham irradiated controls. Competition experiments with cold NF-kappaB- specific oligonucleotides confirmed the specificity of the DNA binding activity. These results provide evidence that high peak power pulsed radiofrequency radiation can perturb the cell and initiate cell signaling pathways. However, at this point, we are not prepared to advocate that the cause is a nonthermal mechanism. Because of the broad distribution of SAR's in the flask, experiments need to be performed to determine if the changes observed are associated with cells exposed to high or low SARs.
Collapse
Affiliation(s)
- Mohan Natarajan
- Department of Radiation Oncology and Center for Environmental Radiation Toxicology, The University of Texas Health Science Center, San Antonio 78229-3900, USA.
| | | | | | | |
Collapse
|
9
|
Pakhomov AG, Mathur SP, Doyle J, Stuck BE, Kiel JL, Murphy MR. Comparative effects of extremely high power microwave pulses and a brief CW irradiation on pacemaker function in isolated frog heart slices. Bioelectromagnetics 2000; 21:245-54. [PMID: 10797453 DOI: 10.1002/(sici)1521-186x(200005)21:4<245::aid-bem1>3.0.co;2-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The existence of specific bioeffects due to high peak power microwaves and their potential health hazards are among the most debated but least explored problems in microwave biology. The present study attempted to reveal such effects by comparing the bioeffects of short trains of extremely high power microwave pulses (EHPP, 1 micros width, 250-350 kW/g, 9.2 GHz) with those of relatively low power pulses (LPP, 0.5-10 s width, 3-30 W/g, 9.2 GHz). EHPP train duration and average power were made equal to those of an LPP; therefore both exposure modalities produced the same temperature rise. Bioeffects were studied in isolated, spontaneously beating slices of the frog heart. In most cases, a single EHPP train or LPP immediately decreased the inter-beat interval (IBI). The effect was proportional to microwave heating, fully reversible, and easily reproducible. The magnitude and time course of EHPP- and LPP-induced changes always were the same. No delayed or irreversible effects of irradiation were observed. The same effect could be repeated in a single preparation numerous times with no signs of adaptation, sensitization, lasting functional alteration, or damage. A qualitatively different effect, namely, a temporary arrest of preparation beats, could be observed when microwave heating exceeded physiologically tolerable limits. This effect also did not depend on whether the critical temperature rise was produced by LPP or EHPP exposure. Within the studied limits, we found no indications of EHPP-specific bioeffects. EHPP- and LPP-induced changes in the pacemaker rhythm of isolated frog heart preparation were identical and could be entirely attributed to microwave heating.
Collapse
Affiliation(s)
- A G Pakhomov
- McKesson BioServices, Brooks Air Force Base, San Antonio, Texas 78235-5324, USA
| | | | | | | | | | | |
Collapse
|
10
|
Biological Effects of High Peak Power Radio Frequency Pulses. ADVANCES IN ELECTROMAGNETIC FIELDS IN LIVING SYSTEMS 2000. [DOI: 10.1007/978-1-4615-4203-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
|