1
|
Barth A, Ponocny I, Ponocny-Seliger E, Vana N, Winker R. Effects of extremely low-frequency magnetic field exposure on cognitive functions: results of a meta-analysis. Bioelectromagnetics 2010; 31:173-9. [PMID: 19753600 DOI: 10.1002/bem.20543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is extensive literature on possible effects of extremely low-frequency magnetic fields (ELF-MFs) on human cognitive functions. However, due to methodological deficits (e.g., low statistical power, small sample sizes) findings have been inconsistent. In the current study we try to overcome these problems by carrying out a meta-analysis. Literature research revealed 17 studies. Nine of these were included in the meta-analysis because they fulfilled minimum requirements (e.g., at least single-blind experimental study design and documentation of means and standard deviation of the dependent variables). All of the studies used a 50 Hz magnetic field exposure. Small but significant effect sizes could be detected in two cognitive dimensions: in the hard level of visual duration discrimination, task-exposed subjects performed better than controls; at the intermediate level however, exposed subjects performed worse. Additionally, a significant improvement of correct responses was observed in the dimension of "flexibility" under exposure. However, due to the small number of studies per performance dimensions and the resulting instability of estimates, these findings have to be treated with extreme caution. Taken together, the results of the meta-analysis provide little evidence that ELF-MFs have any effects on cognitive functions.
Collapse
Affiliation(s)
- Alfred Barth
- Department for Labor Science and Organization, Institute of Management Science, Vienna University of Technology, Theresianumgasse 27, Vienna, Austria.
| | | | | | | | | |
Collapse
|
2
|
Cvetkovic D, Cosic I. Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic field exposures. Med Biol Eng Comput 2009; 47:1063-73. [DOI: 10.1007/s11517-009-0525-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 08/05/2009] [Indexed: 11/28/2022]
|
3
|
Del Seppia C, Mezzasalma L, Messerotti M, Cordelli A, Ghione S. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance. Bioelectromagnetics 2009; 30:45-51. [PMID: 18720370 DOI: 10.1002/bem.20438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance.
Collapse
Affiliation(s)
- Cristina Del Seppia
- Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy.
| | | | | | | | | |
Collapse
|
4
|
Riddervold IS, Pedersen GF, Andersen NT, Pedersen AD, Andersen JB, Zachariae R, Mølhave L, Sigsgaard T, Kjærgaard SK. Cognitive function and symptoms in adults and adolescents in relation to rf radiation from UMTS base stations. Bioelectromagnetics 2008; 29:257-67. [DOI: 10.1002/bem.20388] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Sienkiewicz Z, Jones N, Bottomley A. Neurobehavioural effects of electromagnetic fields. Bioelectromagnetics 2005; Suppl 7:S116-26. [PMID: 16059919 DOI: 10.1002/bem.20141] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Very few laboratory studies in children have explored the effects of exposure to low level electromagnetic fields (EMFs) on neurobehavioural function. Studies investigating effect on neurotransmitters, cognitive function and brain activity in adults and animals indicate that acute exposure to EMFs does not appear to engender any consistent physiological or behavioural impairment although a few subtle effects may occur. This suggests that exposure of children to low level EMFs may not cause significant detrimental effects on brain function. However the available evidence is not sufficient to draw any definite conclusions, and further laboratory studies are required. In particular, experiments investigating the effects of radiofrequency (RF) fields on the performance of well-characterised cognitive and behavioural tasks by immature and developing animals are recommended, if studies with children cannot be performed for ethical and practical reasons.
Collapse
Affiliation(s)
- Zenon Sienkiewicz
- Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Radiation Protection Division, Chilton, Didcot, United Kingdom.
| | | | | |
Collapse
|
6
|
Abstract
Analgesic electrotherapy is now based on more consistent scientific data; the biological action of the electric current, of the electromagnetic radiations and of the mechanical vibrations is better approached. But the randomized control trials still provide contradictory results concerning the analgesic efficiency of the cryotherapy, the TENS, the pulsed electro-magnetic fields, the ultrasound and laser therapy, the shock waves; iontophoresis, short waves, microwaves, infrasound vibrations are very few investigated. The analgesic electrotherapy cannot be recommended nor prohibited; physical agents represent only therapeutic options. On the basis of the scientific data and of their personal experience, the therapists can use them. More controlled clinical investigations of higher methodological levels are still required.
Collapse
Affiliation(s)
- C-F Roques
- Service de médecine physique et de réadaptation, CHU de Toulouse, hôpital Rangueil, 1, avenue du Professeur-Poulhès, 31403 Toulouse 4, France.
| |
Collapse
|
7
|
Podd J, Abbott J, Kazantzis N, Rowland A. Brief exposure to a 50 Hz, 100 microT magnetic field: effects on reaction time, accuracy, and recognition memory. Bioelectromagnetics 2002; 23:189-95. [PMID: 11891748 DOI: 10.1002/bem.10004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study investigated both the direct and delayed effects of a 50 Hz, 100 microT magnetic field on human performance. Eighty subjects completed a visual duration discrimination task, half being exposed to the field and the other half sham exposed. The delayed effects of this field were also examined in a recognition memory task that followed immediately upon completion of the discrimination task, Unlike our earlier studies, we were unable to find any effects of the field on reaction time and accuracy in the visual discrimination task. However, the field had a delayed effect on memory, producing a decrement in recognition accuracy. We conclude that after many years of experimentation, finding a set of magnetic field parameters and human performance measures that reliably yield magnetic field effects is proving elusive. Yet the large number of significant findings suggests that further research is warranted.
Collapse
Affiliation(s)
- John Podd
- School of Psychology, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
8
|
Cook CM, Thomas AW, Prato FS. Human electrophysiological and cognitive effects of exposure to ELF magnetic and ELF modulated RF and microwave fields: a review of recent studies. Bioelectromagnetics 2002; 23:144-57. [PMID: 11835261 DOI: 10.1002/bem.107] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The investigation of weak (<500 microT), extremely low frequency (ELF, 0-300 Hz) magnetic field (MF) exposure upon human cognition and electrophysiology has yielded incomplete and contradictory evidence that MFs interact with human biology. This may be due to the small number of studies undertaken examining ELF MF effects upon the human electroencephalogram (EEG), and the associated analysis of evoked related potentials (ERPs). Relatively few studies have examined how MF exposure may affect cognitive and perceptual processing in human subjects. The introduction of this review considers some of the recent studies of ELF MF exposure upon the EEG, ERPs and cognitive and perceptual tasks. We also consider some of the confounding factors within current human MF studies and suggest some new strategies for further experimentation.
Collapse
Affiliation(s)
- C M Cook
- Lawson Health Research Institute, Department of Nuclear Medicine MR, St Joseph's Health Care, London, Ontario, Canada.
| | | | | |
Collapse
|
9
|
Crasson M, Legros JJ, Scarpa P, Legros W. 50 Hz magnetic field exposure influence on human performance and psychophysiological parameters: two double-blind experimental studies. Bioelectromagnetics 1999; 20:474-86. [PMID: 10559769 DOI: 10.1002/(sici)1521-186x(199912)20:8<474::aid-bem2>3.0.co;2-m] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two double-blind studies were performed to examine magnetic field (MF) exposure effects and to determine the impact of temporal variation (continuous vs. intermittent exposure) of 100 mu T(rms) 50 Hz MF diurnal exposure on psychological and psychophysiological parameters in healthy humans. Three cephalic exposure sessions of 30-min, i.e., sham, continuous, and intermittent (15 s ON/OFF cycles) MF conditions, were involved. Each subject participated in all sessions, which were spaced at 1-wk intervals. In each session, mood ratings and performance measures were obtained before, during, or after exposure and several electrophysiological data (event-related brain potentials [ERP]) were recorded after each exposure session. These criteria were chosen to evaluate sensory functions as well as automatic and voluntary attentional processes. In experiment 1, 21 healthy male volunteers (20 to 27 years of age) were studied. Ten subjects were exposed at 13:30 h, and 11 subjects were exposed at 16:30 h. Statistically significant changes in the amplitude of ERP were observed after MF exposure in the dichotic listening task, indexing selective attention processes. Eighteen of the 21 original male volunteers took part in experiment 2, undertaken to better understand the results related to information processing involved in selective attention and control for ultradian rhythmicity. Exposure time for all the subjects was at 13:30 h. The analysis of the data again revealed significant amplitude changes of the ERP recorded in the dichotic listening task. Moreover, they demonstrated ERP latency and reaction time slowing in the oddball paradigm, a visual discrimination task after real MF exposure. These results also indicate that a low level 50 Hz MF may have a slight influence on event-related potentials and reaction time under specific circumstances of sustained attention.
Collapse
Affiliation(s)
- M Crasson
- Belgian BioElectroMagnetic Group, Psychoneuroendocrinology Unit, University of Liege, Belgium.
| | | | | | | |
Collapse
|
10
|
Repacholi MH, Greenebaum B. Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 1999; 20:133-60. [PMID: 10194557 DOI: 10.1002/(sici)1521-186x(1999)20:3<133::aid-bem1>3.0.co;2-o] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An international seminar was held June 4-6, 1997, on the biological effects and related health hazards of ambient or environmental static and extremely low frequency (ELF) electric and magnetic fields (0-300 Hz). It was cosponsored by the World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the German, Japanese, and Swiss governments. Speakers provided overviews of the scientific literature that were discussed by participants of the meeting. Subsequently, expert working groups formulated this report, which evaluates possible health effects from exposure to static and ELF electric and magnetic fields and identifies gaps in knowledge requiring more research to improve health risk assessments. The working groups concluded that, although health hazards exist from exposure to ELF fields at high field strengths, the literature does not establish that health hazards are associated with exposure to low-level fields, including environmental levels. Similarly, exposure to static electric fields at levels currently found in the living and working environment or acute exposure to static magnetic fields at flux densities below 2 T, were not found to have demonstrated adverse health consequences. However, reports of biological effects from low-level ELF-field exposure and chronic exposure to static magnetic fields were identified that need replication and further study for WHO to assess any possible health consequences. Ambient static electric fields have not been reported to cause any direct adverse health effects, and so no further research in this area was deemed necessary.
Collapse
|
11
|
Beers GJ, Phillips JL, Prato FS, Nair I. BIOLOGIC EFFECTS OF LOW-LEVEL ELECTROMAGNETIC FIELDS. Magn Reson Imaging Clin N Am 1998. [DOI: 10.1016/s1064-9689(21)00480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Kazantzis N, Podd J, Whittington C. Acute effects of 50 Hz, 100 μT magnetic field exposure on visual duration discrimination at two different times of the day. Bioelectromagnetics 1998. [DOI: 10.1002/(sici)1521-186x(1998)19:5<310::aid-bem5>3.0.co;2-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Whittington CJ, Podd JV. Human performance and physiology: a statistical power analysis of ELF electromagnetic field research. Bioelectromagnetics 1996; 17:274-8. [PMID: 8891186 DOI: 10.1002/(sici)1521-186x(1996)17:4<274::aid-bem3>3.0.co;2-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research examining the effects of electromagnetic fields (EMFs) on human performance and physiology has produced inconsistent results; this might be attributable to low statistical power. Statistical power refers to the probability of obtaining a statistically significant result, given the fact that a real effect exists. The results of a survey of published investigations of the effects of EMFs on human performance and physiology show that statistical power levels are very low, ranging from a mean of .08 for small effect sizes to .46 for large effect sizes. Implications of these findings for the interpretation of results are discussed along with suggestions for increasing statistical power.
Collapse
Affiliation(s)
- C J Whittington
- Department of Psychology, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
14
|
Whittington CJ, Podd JV, Rapley BR. Acute effects of 50 Hz magnetic field exposure on human visual task and cardiovascular performance. Bioelectromagnetics 1996; 17:131-7. [PMID: 8860730 DOI: 10.1002/(sici)1521-186x(1996)17:2<131::aid-bem7>3.0.co;2-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One hundred subjects, males and females with ages ranging between 18 and 48 years, were studied under both field-exposed and sham-exposed conditions. A 50 Hz, 100 mu T magnetic field (MF) was used. To examine the effect of field exposure on performance, a two-alternative, forced-choice, duration-discrimination task with three levels of difficulty was used. The subject's task was to decide which of two sequentially presented light flashes had the longer duration. The standard duration was 50 ms, and the alternative durations were 65, 100, or 125 ms. Both reaction time and percentage of correct responses were recorded for each subject. MF and sham exposure were for 9 min each. Blood pressure and heart rate were also measured before and following MF exposure and sham-exposure trials. The study was performed double blind, with the exposure order counterbalanced. Compared to sham exposure, MF exposure significantly decreased reaction time on the hardest level of the performance task. MF exposure did not reliably affect percentage correct or cardiovascular performance. It was demonstrated that a relatively high level of statistical power was the basis for the observed MF effect, and the need to pay closer attention to power levels in future research is discussed.
Collapse
Affiliation(s)
- C J Whittington
- Department of Psychology, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|