1
|
Huang YH, Shih HW, Tsai YC. Expressing miR-282 mitigates Aβ42-induced neurodegeneration in Alzheimer's model in Drosophila. Biochem Biophys Res Commun 2024; 734:150768. [PMID: 39357339 DOI: 10.1016/j.bbrc.2024.150768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease is a complex neurodegenerative condition characterized by the accumulation of amyloid beta plaques, leading to memory loss, cognitive decline, and impaired autonomous behavior. Despite extensive research, an effective treatment remains elusive. The buildup of amyloid beta plaques (Aβ42) in the brain causes oxidative stress and disrupts normal molecular signaling, adversely affecting neuron function. Previous research has identified factors that can either exacerbate or mitigate neurodegenerative diseases. Our study aimed to uncover new factors involved in the pathogenesis of Alzheimer's disease. Using Drosophila as a model organism, we employed the Gal4/UAS system to express human Aβ42 in the flies' retinal neurons which led to neurodegenerative changes in their compound eyes. To identify genetic modifiers, we conducted a screen by co-expressing microRNAs and found that miR-282 acts as a suppressor. Overexpressing miR-282 in the GMR > Aβ42 background reduced Aβ42-induced neurodegeneration. Further analysis using prediction tools and RNA interference experiments identified three potential downstream targets of miR-282: calpain-B, knot, and scabrous. Downregulating these genes via RNA interference in the GMR > Aβ42 background mitigated neurodegeneration. Our research highlights miR-282 as a novel molecule that may influence the progression of Alzheimer's disease, offering potential avenues for future therapeutic or diagnostic developments.
Collapse
Affiliation(s)
- Yu-Hsuan Huang
- Department of Life Science and Life Science Center, Tunghai University, Taichung, 40704, Taiwan R.O.C
| | - Hui-Wen Shih
- Department of Life Science and Life Science Center, Tunghai University, Taichung, 40704, Taiwan R.O.C
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, Taichung, 40704, Taiwan R.O.C.
| |
Collapse
|
2
|
Zhai C, Wang Y, Qi S, Yang M, Wu S. Ca 2+-calpains axis regulates Yki stability and activity in Drosophila. J Genet Genomics 2024; 51:1020-1029. [PMID: 38663479 DOI: 10.1016/j.jgg.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Yorkie (Yki) is a key effector of the Hippo pathway that activates the expression of targets by associating with the transcription factor Scalloped. Various upstream signals, such as cell polarity and mechanical cues, control transcriptional programs by regulating Yki activity. Searching for Yki regulatory factors has far-reaching significance for studying the Hippo pathway in development and human diseases. In this study, we identify Calpain-A (CalpA) and Calpain-B (CalpB), two calcium (Ca2+)-dependent modulatory proteases of the calpain family, as critical regulators of Yki in Drosophila that interact with Yki, respectively. Ca2+ induces Yki cleavage in a CalpA/CalpB-dependent manner, and the protease activity of CalpA/CalpB is pivotal for the cleavage. Furthermore, overexpression of CalpA or CalpB in Drosophila partially restores the large wing phenotype caused by Yki overexpression, and F98 of Yki is an important cleavage site by the Ca2+-calpains axis. Our study uncovers a unique mechanism whereby the Ca2+-calpain axis modulates Yki activity through protein cleavage.
Collapse
Affiliation(s)
- Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenao Qi
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muhan Yang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Julio A, Guedes-Silva TC, Berni M, Bisch PM, Araujo H. A Rhodnius prolixus catalytically inactive Calpain protease patterns the insect embryonic dorsal-ventral axis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100094. [PMID: 39262636 PMCID: PMC11387712 DOI: 10.1016/j.cris.2024.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
The calcium dependent Calpain proteases are modulatory enzymes with important roles in cell cycle control, development and immunity. In the fly model Drosophila melanogaster Calpain A cleaves Cactus/IkappaB and consequently modifies Toll signals during embryonic dorsal-ventral (DV) patterning. Here we explore the role of Calpains in the hemiptera Rhodnius prolixus, an intermediate germband insect where the Bone Morphogenetic Protein (BMP) instead of the Toll pathway plays a major role in DV patterning. Phylogenetic analysis of Calpains in species ranging from Isoptera to Diptera indicates an increase of Calpain sequences in the R. prolixus genome and other hemimetabolous species. One locus encoding each of the CalpC, CalpD and Calp7 families, and seven Calpain A/B loci are present in the R. prolixus genome. Several predicted R. prolixus Calpains display a unique architecture, such as loss of Calcium-binding EF-hand domains and loss of catalytic residues in the active site CysPc domain, yielding catalytically dead Calpains A/B. Knockdown for one of these inactive Calpains results in embryonic DV patterning defects, with expansion of ventral and lateral gene expression domains and consequent failure of germ band elongation. In conclusion, our results reveal that Calpains may exert a conserved function in insect DV patterning, despite the changing role of the Toll and BMP pathways in defining gene expression territories along the insect DV axis.
Collapse
Affiliation(s)
- Alison Julio
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainan C Guedes-Silva
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mateus Berni
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil (INCT-EM)
| | | | - Helena Araujo
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil (INCT-EM)
| |
Collapse
|
4
|
Metwally E, Zhao G, Zhang YQ. The calcium-dependent protease calpain in neuronal remodeling and neurodegeneration. Trends Neurosci 2021; 44:741-752. [PMID: 34417060 DOI: 10.1016/j.tins.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Calpains are evolutionarily conserved and widely expressed Ca2+-activated cysteine proteases that act at neutral pH. The activity of calpains is tightly regulated, given that their abnormal activation can have deleterious effects leading to promiscuous cleavage of various targets. Genetic mutations in the genes encoding calpains are associated with human diseases, while abnormally elevated Ca2+ levels promote Ca2+-dependent calpain activation in pathologies associated with ischemic insults and neurodegeneration. In this review, we discuss recent findings on the regulation of calpain activity and activation as revealed through pharmacological, genetic, and optogenetic approaches. Furthermore, we highlight studies elucidating the role of calpains in dendrite pruning and axon degeneration in the context of Ca2+ homeostasis. Finally, we discuss future directions for the study of calpains and potential therapeutic strategies for inhibiting calpain activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Elsayed Metwally
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Guoli Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|
5
|
Ng R, Manring H, Papoutsidakis N, Albertelli T, Tsai N, See CJ, Li X, Park J, Stevens TL, Bobbili PJ, Riaz M, Ren Y, Stoddard CE, Janssen PM, Bunch TJ, Hall SP, Lo YC, Jacoby DL, Qyang Y, Wright N, Ackermann MA, Campbell SG. Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation. JCI Insight 2019; 5:128643. [PMID: 31194698 DOI: 10.1172/jci.insight.128643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder with variable genetic etiologies. Here we focused on understanding the precise molecular pathology of a single clinical variant in DSP, the gene encoding desmoplakin. We initially identified a novel missense desmoplakin variant (p.R451G) in a patient diagnosed with biventricular ACM. An extensive single-family ACM cohort was assembled, revealing a pattern of coinheritance for R451G desmoplakin and the ACM phenotype. An in vitro model system using patient-derived induced pluripotent stem cell lines showed depressed levels of desmoplakin in the absence of abnormal electrical propagation. Molecular dynamics simulations of desmoplakin R451G revealed no overt structural changes, but a significant loss of intramolecular interactions surrounding a putative calpain target site was observed. Protein degradation assays of recombinant desmoplakin R451G confirmed increased calpain vulnerability. In silico screening identified a subset of 3 additional ACM-linked desmoplakin missense mutations with apparent enhanced calpain susceptibility, predictions that were confirmed experimentally. Like R451G, these mutations are found in families with biventricular ACM. We conclude that augmented calpain-mediated degradation of desmoplakin represents a shared pathological mechanism for select ACM-linked missense variants. This approach for identifying variants with shared molecular pathologies may represent a powerful new strategy for understanding and treating inherited cardiomyopathies.
Collapse
Affiliation(s)
- Ronald Ng
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Heather Manring
- Department of Physiology and Cell Biology and.,Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Nikolaos Papoutsidakis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Taylor Albertelli
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Nicole Tsai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Claudia J See
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Xia Li
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tyler L Stevens
- Department of Physiology and Cell Biology and.,Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Prameela J Bobbili
- Department of Physiology and Cell Biology and.,Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yongming Ren
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Science, University of Connecticut Health, Farmington, Connecticut, USA
| | | | - T Jared Bunch
- Department of Cardiology, Intermountain Health, Salt Lake City, Utah, USA
| | - Stephen P Hall
- Department of Family Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ying-Chun Lo
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel L Jacoby
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.,Yale Stem Cell Center, Yale University, New Haven, Connecticut, USA.,Vascular Biology and Therapeutics Program and
| | - Nathan Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology and.,Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Calcium-Activated Calpain Specifically Cleaves Glutamate Receptor IIA But Not IIB at the Drosophila Neuromuscular Junction. J Neurosci 2019; 39:2776-2791. [PMID: 30705102 DOI: 10.1523/jneurosci.2213-17.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Calpains are calcium-dependent, cytosolic proteinases active at neutral pH. They do not degrade but cleave substrates at limited sites. Calpains are implicated in various pathologies, such as ischemia, injuries, muscular dystrophy, and neurodegeneration. Despite so, the physiological function of calpains remains to be clearly defined. Using the neuromuscular junction of Drosophila of both sexes as a model, we performed RNAi screening and uncovered that calpains negatively regulated protein levels of the glutamate receptor GluRIIA but not GluRIIB. We then showed that calpains enrich at the postsynaptic area, and the calcium-dependent activation of calpains induced cleavage of GluRIIA at Q788 of its C terminus. Further genetic and biochemical experiments revealed that different calpains genetically and physically interact to form a protein complex. The protein complex was required for the proteinase activation to downregulate GluRIIA. Our data provide a novel insight into the mechanisms by which different calpains act together as a complex to specifically control GluRIIA levels and consequently synaptic function.SIGNIFICANCE STATEMENT Calpain has been implicated in neural insults and neurodegeneration. However, the physiological function of calpains in the nervous system remains to be defined. Here, we show that calpain enriches at the postsynaptic area and negatively and specifically regulates GluRIIA, but not IIB, level during development. Calcium-dependent activation of calpain cleaves GluRIIA at Q788 of its C terminus. Different calpains constitute an active protease complex to cleave its target. This study reveals a critical role of calpains during development to specifically cleave GluRIIA at synapses and consequently regulate synaptic function.
Collapse
|
7
|
Cardoso M, Oliveira D, Araujo H. Expression and Activity of Calpain A in Drosophila melanogaster. Methods Mol Biol 2019; 1915:93-101. [PMID: 30617798 DOI: 10.1007/978-1-4939-8988-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Detecting calpain activity in Drosophila tissues is a fundamental tool to study calpain function. We use differential centrifugation to prepare membrane- versus cytosol-enriched fractions for measuring calpain activity with the fluorogenic substrate N-LY-AMC. With this method one can measure calpain A activity in wild-type flies and in several mutant fly backgrounds, revealing a strong correlation between in situ membrane distribution and in vitro determined activity measurements. Here we describe the steps for tissue preparation and calpain activity measurement in the Drosophila embryo.
Collapse
Affiliation(s)
- Maira Cardoso
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Oliveira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Molecular Entomology, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Rockenfeller P, Smolnig M, Diessl J, Bashir M, Schmiedhofer V, Knittelfelder O, Ring J, Franz J, Foessl I, Khan MJ, Rost R, Graier WF, Kroemer G, Zimmermann A, Carmona-Gutierrez D, Eisenberg T, Büttner S, Sigrist SJ, Kühnlein RP, Kohlwein SD, Gourlay CW, Madeo F. Diacylglycerol triggers Rim101 pathway-dependent necrosis in yeast: a model for lipotoxicity. Cell Death Differ 2018; 25:767-783. [PMID: 29230001 PMCID: PMC5864183 DOI: 10.1038/s41418-017-0014-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023] Open
Abstract
The loss of lipid homeostasis can lead to lipid overload and is associated with a variety of disease states. However, little is known as to how the disruption of lipid regulation or lipid overload affects cell survival. In this study we investigated how excess diacylglycerol (DG), a cardinal metabolite suspected to mediate lipotoxicity, compromises the survival of yeast cells. We reveal that increased DG achieved by either genetic manipulation or pharmacological administration of 1,2-dioctanoyl-sn-glycerol (DOG) triggers necrotic cell death. The toxic effects of DG are linked to glucose metabolism and require a functional Rim101 signaling cascade involving the Rim21-dependent sensing complex and the activation of a calpain-like protease. The Rim101 cascade is an established pathway that triggers a transcriptional response to alkaline or lipid stress. We propose that the Rim101 pathway senses DG-induced lipid perturbation and conducts a signaling response that either facilitates cellular adaptation or triggers lipotoxic cell death. Using established models of lipotoxicity, i.e., high-fat diet in Drosophila and palmitic acid administration in cultured human endothelial cells, we present evidence that the core mechanism underlying this calpain-dependent lipotoxic cell death pathway is phylogenetically conserved.
Collapse
Affiliation(s)
- Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | - Martin Smolnig
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Jutta Diessl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Mina Bashir
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, 8010, Austria
| | - Vera Schmiedhofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Oskar Knittelfelder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Julia Ring
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Joakim Franz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Ines Foessl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, 8010, Austria
| | - Muhammad J Khan
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, 8010, Austria
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, 44000, Pakistan
| | - René Rost
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, 8010, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, 8010, Austria
| | - Guido Kroemer
- INSERM U848, Villejuif, 94805, France
- Metabolomics Platform, Institut Gustave Roussy, Paris, 94805, France
- Centre de Recherche des Cordeliers, Paris, 75006, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, 75015, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75270, France
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | | | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- BioTechMed-Graz, Graz, 8010, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Stephan J Sigrist
- Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
- NeuroCure Charité, Berlin, 10117, Germany
| | - Ronald P Kühnlein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- BioTechMed-Graz, Graz, 8010, Austria
- Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Sepp D Kohlwein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- BioTechMed-Graz, Graz, 8010, Austria
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, 8010, Austria.
| |
Collapse
|
9
|
Tran D, Galletti R, Neumann ED, Dubois A, Sharif-Naeini R, Geitmann A, Frachisse JM, Hamant O, Ingram GC. A mechanosensitive Ca 2+ channel activity is dependent on the developmental regulator DEK1. Nat Commun 2017; 8:1009. [PMID: 29044106 PMCID: PMC5647327 DOI: 10.1038/s41467-017-00878-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Responses of cells to mechanical stress are thought to be critical in coordinating growth and development. Consistent with this idea, mechanically activated channels play important roles in animal development. For example, the PIEZO1 channel controls cell division and epithelial-layer integrity and is necessary for vascular development in mammals. In plants, the actual contribution of mechanoperception to development remains questionable because very few putative mechanosensors have been identified and the phenotypes of the corresponding mutants are rather mild. Here, we show that the Arabidopsis Defective Kernel 1 (DEK1) protein, which is essential for development beyond early embryogenesis, is associated with a mechanically activated Ca2+ current in planta, suggesting that perception of mechanical stress plays a critical role in plant development.
Collapse
Affiliation(s)
- Daniel Tran
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Sciences Plant Saclay, Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
- Department of Physiology and Cell Information Systems, McGill University, Montreal, Québec, Canada, H3G-0B1
| | - Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Enrique D Neumann
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Annick Dubois
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems, McGill University, Montreal, Québec, Canada, H3G-0B1
| | - Anja Geitmann
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Montreal, Québec, Canada, H9X3V9
| | - Jean-Marie Frachisse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Sciences Plant Saclay, Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
10
|
Murakami A, Nagao K, Juni N, Hara Y, Umeda M. An N-terminal di-proline motif is essential for fatty acid-dependent degradation of Δ9-desaturase in Drosophila. J Biol Chem 2017; 292:19976-19986. [PMID: 28972163 DOI: 10.1074/jbc.m117.801936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
The Δ9-fatty acid desaturase introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA and regulates the cellular levels of unsaturated fatty acids. However, it is unclear how Δ9-desaturase expression is regulated in response to changes in the levels of fatty acid desaturation. In this study, we found that the degradation of DESAT1, the sole Δ9-desaturase in the Drosophila cell line S2, was significantly enhanced when the amounts of unsaturated acyl chains of membrane phospholipids were increased by supplementation with unsaturated fatty acids, such as oleic and linoleic acids. In contrast, inhibition of DESAT1 activity remarkably suppressed its degradation. Of note, removal of the DESAT1 N-terminal domain abolished the responsiveness of DESAT1 degradation to the level of fatty acid unsaturation. Further truncation and amino acid replacement analyses revealed that two sequential prolines, the second and third residues of DESAT1, were responsible for the unsaturated fatty acid-dependent degradation. Although degradation of mouse stearoyl-CoA desaturase 1 (SCD1) was unaffected by changes in fatty acid unsaturation, introduction of the N-terminal sequential proline residues into SCD1 conferred responsiveness to unsaturated fatty acid-dependent degradation. Furthermore, we also found that the Ca2+-dependent cysteine protease calpain is involved in the sequential proline-dependent degradation of DESAT1. In light of these findings, we designated the sequential prolines at the second and third positions of DESAT1 as a "di-proline motif," which plays a crucial role in the regulation of Δ9-desaturase expression in response to changes in the level of cellular unsaturated fatty acids.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510.
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510.
| |
Collapse
|
11
|
Vonhoff F, Keshishian H. Activity-Dependent Synaptic Refinement: New Insights from Drosophila. Front Syst Neurosci 2017; 11:23. [PMID: 28484377 PMCID: PMC5399093 DOI: 10.3389/fnsys.2017.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 01/26/2023] Open
Abstract
During development, neurons establish inappropriate connections as they seek out their synaptic partners, resulting in supernumerary synapses that must be pruned away. The removal of miswired synapses usually involves electrical activity, often through a Hebbian spike-timing mechanism. A novel form of activity-dependent refinement is used by Drosophila that may be non-Hebbian, and is critical for generating the precise connectivity observed in that system. In Drosophila, motoneurons use both glutamate and the biogenic amine octopamine for neurotransmission, and the muscle fibers receive multiple synaptic inputs. Motoneuron growth cones respond in a time-regulated fashion to multiple chemotropic signals arising from their postsynaptic partners. Central to this mechanism is a very low frequency (<0.03 Hz) oscillation of presynaptic cytoplasmic calcium, that regulates and coordinates the action of multiple downstream effectors involved in the withdrawal from off-target contacts. Low frequency calcium oscillations are widely observed in developing neural circuits in mammals, and have been shown to be critical for normal connectivity in a variety of neural systems. In Drosophila these mechanisms allow the growth cone to sample widely among possible synaptic partners, evaluate opponent chemotropic signals, and withdraw from off-target contacts. It is possible that the underlying molecular mechanisms are conserved widely among invertebrates and vertebrates.
Collapse
Affiliation(s)
- Fernando Vonhoff
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Haig Keshishian
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
12
|
Calpain A controls mitotic synchrony in the Drosophila blastoderm embryo. Mech Dev 2017; 144:141-149. [DOI: 10.1016/j.mod.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
|
13
|
Marco Antonio DS, Hartfelder K. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (Apis melliferaL.): A Correlative Analysis of Morphology and Gene Expression. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:139-156. [DOI: 10.1002/jez.b.22696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 12/27/2022]
Affiliation(s)
- David S. Marco Antonio
- Departamento de Genética; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
14
|
Tataroglu O, Zhao X, Busza A, Ling J, O’Neill J, Emery P. Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks. Cell 2015; 163:1214-1224. [PMID: 26590423 PMCID: PMC4675327 DOI: 10.1016/j.cell.2015.10.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/24/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles.
Collapse
Affiliation(s)
- Ozgur Tataroglu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaohu Zhao
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ania Busza
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jinli Ling
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
15
|
Menzies FM, Garcia-Arencibia M, Imarisio S, O'Sullivan NC, Ricketts T, Kent BA, Rao MV, Lam W, Green-Thompson ZW, Nixon RA, Saksida LM, Bussey TJ, O'Kane CJ, Rubinsztein DC. Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death Differ 2014; 22:433-44. [PMID: 25257175 PMCID: PMC4326573 DOI: 10.1038/cdd.2014.151] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/01/2023] Open
Abstract
Over recent years, accumulated evidence suggests that autophagy induction is protective in animal models of a number of neurodegenerative diseases. Intense research in the field has elucidated different pathways through which autophagy can be upregulated and it is important to establish how modulation of these pathways impacts upon disease progression in vivo and therefore which, if any, may have further therapeutic relevance. In addition, it is important to understand how alterations in these target pathways may affect normal physiology when constitutively modulated over a long time period, as would be required for treatment of neurodegenerative diseases. Here we evaluate the potential protective effect of downregulation of calpains. We demonstrate, in Drosophila, that calpain knockdown protects against the aggregation and toxicity of proteins, like mutant huntingtin, in an autophagy-dependent fashion. Furthermore, we demonstrate that, overexpression of the calpain inhibitor, calpastatin, increases autophagosome levels and is protective in a mouse model of Huntington's disease, improving motor signs and delaying the onset of tremors. Importantly, long-term inhibition of calpains did not result in any overt deleterious phenotypes in mice. Thus, calpain inhibition, or activation of autophagy pathways downstream of calpains, may be suitable therapeutic targets for diseases like Huntington's disease.
Collapse
Affiliation(s)
- F M Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - M Garcia-Arencibia
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - S Imarisio
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - N C O'Sullivan
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - T Ricketts
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - B A Kent
- 1] Department of Psychology, University of Cambridge, Cambridge, UK [2] Translational and Cognitive Neuroscience Laboratory, MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - M V Rao
- 1] Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA [2] Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA [3] Department of Cell Biology, New York University Langone Medical Center, New York, NY, USA
| | - W Lam
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Z W Green-Thompson
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - R A Nixon
- 1] Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA [2] Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA [3] Department of Cell Biology, New York University Langone Medical Center, New York, NY, USA
| | - L M Saksida
- 1] Department of Psychology, University of Cambridge, Cambridge, UK [2] Translational and Cognitive Neuroscience Laboratory, MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - T J Bussey
- 1] Department of Psychology, University of Cambridge, Cambridge, UK [2] Translational and Cognitive Neuroscience Laboratory, MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - C J O'Kane
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - D C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
16
|
Fontenele M, Lim B, Oliveira D, Buffolo M, Perlman DH, Schupbach T, Araujo H. Calpain A modulates Toll responses by limited Cactus/IκB proteolysis. Mol Biol Cell 2013; 24:2966-80. [PMID: 23864715 PMCID: PMC3771957 DOI: 10.1091/mbc.e13-02-0113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Calcium-dependent cysteine proteases of the calpain family are modulatory proteases that cleave their substrates in a limited manner. Among their substrates, calpains target vertebrate and invertebrate IκB proteins. Because proteolysis by calpains potentially generates novel protein functions, it is important to understand how this affects NFκB activity. We investigate the action of Calpain A (CalpA) on the Drosophila melanogaster IκB homologue Cactus in vivo. CalpA alters the absolute amounts of Cactus protein. Our data indicate, however, that CalpA uses additional mechanisms to regulate NFκB function. We provide evidence that CalpA interacts physically with Cactus, recognizing a Cactus pool that is not bound to Dorsal, a fly NFκB/Rel homologue. We show that proteolytic cleavage by CalpA generates Cactus fragments lacking an N-terminal region required for Toll responsiveness. These fragments are generated in vivo and display properties distinct from those of full-length Cactus. We propose that CalpA targets free Cactus, which is incorporated into and modulates Toll-responsive complexes in the embryo and immune system.
Collapse
Affiliation(s)
- Marcio Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Brazil Chemistry Institute, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 Princeton Collaborative Proteomics and Mass Spectrometry Center, Princeton University, Princeton, NJ 08544 Molecular Biology Department, Princeton University, Princeton, NJ 08544 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao S, Liang Z, Demko V, Wilson R, Johansen W, Olsen OA, Shalchian-Tabrizi K. Massive expansion of the calpain gene family in unicellular eukaryotes. BMC Evol Biol 2012; 12:193. [PMID: 23020305 PMCID: PMC3563603 DOI: 10.1186/1471-2148-12-193] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022] Open
Abstract
Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.
Collapse
Affiliation(s)
- Sen Zhao
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, OSLO, N-0136, Norway
| | | | | | | | | | | | | |
Collapse
|
18
|
Kókai E, Páldy FS, Somogyi K, Chougule A, Pál M, Kerekes É, Deák P, Friedrich P, Dombrádi V, Ádám G. CalpB modulates border cell migration in Drosophila egg chambers. BMC DEVELOPMENTAL BIOLOGY 2012; 12:20. [PMID: 22827336 PMCID: PMC3441222 DOI: 10.1186/1471-213x-12-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/24/2012] [Indexed: 12/14/2022]
Abstract
Background Calpains are calcium regulated intracellular cysteine proteases implicated in a variety of physiological functions and pathological conditions. The Drosophila melanogaster genome contains only two genes, CalpA and CalpB coding for canonical, active calpain enzymes. The movement of the border cells in Drosophila egg chambers is a well characterized model of the eukaryotic cell migration. Using this genetically pliable model we can investigate the physiological role of calpains in cell motility. Results We demonstrate at the whole organism level that CalpB is implicated in cell migration, while the structurally related CalpA paralog can not fulfill the same function. The downregulation of the CalpB gene by mutations or RNA interference results in a delayed migration of the border cells in Drosophila egg chambers. This phenotype is significantly enhanced when the focal adhesion complex genes encoding for α-PS2 integrin ( if), β-PS integrin ( mys) and talin ( rhea) are silenced. The reduction of CalpB activity diminishes the release of integrins from the rear end of the border cells. The delayed migration and the reduced integrin release phenotypes can be suppressed by expressing wild-type talin-head in the border cells but not talin-headR367A, a mutant form which is not able to bind β-PS integrin. CalpB can cleave talin in vitro, and the two proteins coimmunoprecipitate from Drosophila extracts. Conclusions The physiological function of CalpB in border cell motility has been demonstrated in vivo. The genetic interaction between the CalpB and the if, mys, as well as rhea genes, the involvement of active talin head-domains in the process, and the fact that CalpB and talin interact with each other collectively suggest that the limited proteolytic cleavage of talin is one of the possible mechanisms through which CalpB regulates cell migration.
Collapse
Affiliation(s)
- Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Nagyerdei krt, 98, Debrecen H-4032, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. PLoS Genet 2012; 8:e1002602. [PMID: 22479198 PMCID: PMC3315469 DOI: 10.1371/journal.pgen.1002602] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/04/2012] [Indexed: 01/17/2023] Open
Abstract
The calpains are physiologically important Ca2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca2+]i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover. Calpains are calcium activated non-lysosomal proteases that cleave proteins with exquisite selectivity. Proteins can be activated by calpain cleavage, because they are released from inhibitory constraints, or they can be targeted for further degradation to facilitate their normal physiological turnover or to promote cellular remodelling. Inappropriate calpain activity can lead to degenerative pathologies and cancers. Our understanding of calpain function is based primarily on typical calpains, which carry EF hand motifs that bind Ca2+ or mediate dimerization; however, typical and atypical calpains, which lack EF hand motifs, are both present in mammals. Hence, any therapeutic intervention designed to suppress degenerative conditions, particularly those caused by elevated Ca2+ levels, should also consider the potential involvement of atypical calpains. We have taken advantage of the model organism C. elegans, which only encodes atypical calpain proteins, to gain an understanding of the evolution and activities of these proteins. We show that the CLP-1 atypical calpain is normally expressed in muscle and localizes to sarcomeric sub-structures. We find that CLP-1 contributes to the muscle degeneration observed in a model of Duchenne muscular dystrophy. Our studies also highlight the importance of calcium dysregulation in promoting CLP-1 activity and muscle degeneration.
Collapse
|
20
|
Reinecke JB, DeVos SL, McGrath JP, Shepard AM, Goncharoff DK, Tait DN, Fleming SR, Vincent MP, Steinhilb ML. Implicating calpain in tau-mediated toxicity in vivo. PLoS One 2011; 6:e23865. [PMID: 21858230 PMCID: PMC3157467 DOI: 10.1371/journal.pone.0023865] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/26/2011] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease and other related neurodegenerative disorders known as tauopathies are characterized by the accumulation of abnormally phosphorylated and aggregated forms of the microtubule-associated protein tau. Several laboratories have identified a 17 kD proteolytic fragment of tau in degenerating neurons and in numerous cell culture models that is generated by calpain cleavage and speculated to contribute to tau toxicity. In the current study, we employed a Drosophila tauopathy model to investigate the importance of calpain-mediated tau proteolysis in contributing to tau neurotoxicity in an animal model of human neurodegenerative disease. We found that mutations that disrupted endogenous calpainA or calpainB activity in transgenic flies suppressed tau toxicity. Expression of a calpain-resistant form of tau in Drosophila revealed that mutating the putative calpain cleavage sites that produce the 17 kD fragment was sufficient to abrogate tau toxicity in vivo. Furthermore, we found significant toxicity in the fly retina associated with expression of only the 17 kD tau fragment. Collectively, our data implicate calpain-mediated proteolysis of tau as an important pathway mediating tau neurotoxicity in vivo.
Collapse
Affiliation(s)
- James B. Reinecke
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Sarah L. DeVos
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - James P. McGrath
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Amanda M. Shepard
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Dustin K. Goncharoff
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Don N. Tait
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Samantha R. Fleming
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Michael P. Vincent
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:224-36. [PMID: 21864727 DOI: 10.1016/j.bbapap.2011.08.005] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 01/26/2023]
Abstract
Calpain is an intracellular Ca(2+)-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02). Recent expansion of sequence data across the species definitively shows that calpain has been present throughout evolution; calpains are found in almost all eukaryotes and some bacteria, but not in archaebacteria. Fifteen genes within the human genome encode a calpain-like protease domain. Interestingly, some human calpains, particularly those with non-classical domain structures, are very similar to calpain homologs identified in evolutionarily distant organisms. Three-dimensional structural analyses have helped to identify calpain's unique mechanism of activation; the calpain protease domain comprises two core domains that fuse to form a functional protease only when bound to Ca(2+)via well-conserved amino acids. This finding highlights the mechanistic characteristics shared by the numerous calpain homologs, despite the fact that they have divergent domain structures. In other words, calpains function through the same mechanism but are regulated independently. This article reviews the recent progress in calpain research, focusing on those studies that have helped to elucidate its mechanism of action. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of medical Science, Tokyo, Japan.
| | | |
Collapse
|
22
|
Sorimachi H, Hata S, Ono Y. Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp Anim 2011; 59:549-66. [PMID: 21030783 DOI: 10.1538/expanim.59.549] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Calpains are intracellular Ca²(+)-dependent cysteine proteases (Clan CA, family C02, EC 3.4.22.17) found in almost all eukaryotes and some bacteria. Calpains display limited proteolytic activity at neutral pH, proteolysing substrates to transform and modulate their structures and activities, and are therefore called "modulator proteases". The human genome has 15 genes that encode a calpain-like protease domain, generating diverse calpain homologues that possess combinations of several functional domains such as Ca²(+)-binding domains and Zn-finger domains. The importance of the physiological roles of calpains is reflected in the fact that particular defects in calpain functionality cause a variety of deficiencies in many different organisms, including lethality, muscular dystrophies, lissencephaly, and tumorigenesis. In this review, the unique characteristics of this distinctive protease superfamily are introduced in terms of genetically modified animals, some of which are animal models of calpain deficiency diseases.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Japan
| | | | | |
Collapse
|
23
|
Sorimachi H, Hata S, Ono Y. Calpain chronicle--an enzyme family under multidisciplinary characterization. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:287-327. [PMID: 21670566 PMCID: PMC3153876 DOI: 10.2183/pjab.87.287] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/04/2011] [Indexed: 05/29/2023]
Abstract
Calpain is an intracellular Ca2+-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02) discovered in 1964. It was also called CANP (Ca2+-activated neutral protease) as well as CASF, CDP, KAF, etc. until 1990. Calpains are found in almost all eukaryotes and a few bacteria, but not in archaebacteria. Calpains have a limited proteolytic activity, and function to transform or modulate their substrates' structures and activities; they are therefore called, "modulator proteases." In the human genome, 15 genes--CAPN1, CAPN2, etc.--encode a calpain-like protease domain. Their products are calpain homologs with divergent structures and various combinations of functional domains, including Ca2+-binding and microtubule-interaction domains. Genetic studies have linked calpain deficiencies to a variety of defects in many different organisms, including lethality, muscular dystrophies, gastropathy, and diabetes. This review of the study of calpains focuses especially on recent findings about their structure-function relationships. These discoveries have been greatly aided by the development of 3D structural studies and genetic models.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | |
Collapse
|
24
|
Kovács L, Alexa A, Klement E, Kókai E, Tantos A, Gógl G, Sperka T, Medzihradszky KF, Tözsér J, Dombrádi V, Friedrich P. Regulation of calpain B from Drosophila melanogaster by phosphorylation. FEBS J 2009; 276:4959-72. [PMID: 19694808 DOI: 10.1111/j.1742-4658.2009.07198.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calpain B is one of the two catalytically competent calpain (calcium-activated papain) isoenzymes in Drosophila melanogaster. Because structural predictions hinted at the presence of several potential phosphorylation sites in this enzyme, we investigated the in vitro phosphorylation of the recombinant protein by protein kinase A as well as by the extracellular signal-regulated protein kinases (ERK) 1 and 2. By MS, we identified Ser845 in the Ca2+ binding region of an EF-hand motif, and Ser240 close to the autocatalytic activation site of calpain B, as being the residues phosphorylated by protein kinase A. In the transducer region of the protease, Thr747 was shown to be the target of the ERK phosphorylation. Based on the results of three different assays, we concluded that the treatment of calpain B with protein kinase A and ERK1 and ERK2 kinases increases the rate of the autoproteolytic activation of the enzyme, together with the rate of the digestion of external peptide or protein substrates. Phosphorylation also elevates the Ca2+ sensitivity of the protease. The kinetic analysis of phosphorylation mimicking Thr747Glu and Ser845Glu calpain B mutants confirmed the above conclusions. Out of the three phosphorylation events tested in vitro, we verified the in vivo phosphorylation of Thr747 in epidermal growth factor-stimulated Drosophila S2 cells. The data obtained suggest that the activation of the ERK pathway by extracellular signals results in the phosphorylation and activation of calpain B in fruit flies.
Collapse
Affiliation(s)
- László Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, Vieira V, Negreiros E, Machado E, Araujo H. The Ca2+-dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 2009; 126:737-51. [PMID: 19442719 DOI: 10.1016/j.mod.2009.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/15/2022]
Abstract
Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of the Toll pathway directs Dorsal nuclear translocation by inducing proteosomal degradation of the I kappaB homologue Cactus. Another mechanism that impacts on Dorsal activation involves the Toll-independent pathway, which regulates constitutive Cactus degradation. We have shown that the BMP protein Decapentaplegic (Dpp) inhibits Cactus degradation independent of Toll. Here we report on a novel element of this pathway: the calcium-dependent protease Calpain A. Calpain A knockdowns increase Cactus levels, shifting the Dorsal gradient and dorsal-ventral patterning. As shown for mammalian I kappaB, this effect requires PEST sequences in the Cactus C-terminus, implying a conserved role for calpains. Alteration of Calpain A or dpp results in similar effects on Dorsal target genes. Epistatic analysis confirms Calpain A activity is regulated by Dpp, indicating that Dpp signals increase Cactus levels through Calpain A inhibition, thereby interfering with Dorsal activation. This mechanism may allow coordination of Toll, BMP and Ca(2+) signals, conferring precision to Dorsal-target expression domains.
Collapse
Affiliation(s)
- M Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Identifying calpain substrates in intact S2 cells of Drosophila. Arch Biochem Biophys 2008; 481:219-25. [PMID: 19038228 DOI: 10.1016/j.abb.2008.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 11/21/2022]
Abstract
Calpains are cysteine proteases involved in a number of physiological and pathological processes, yet our knowledge of substrates cleaved in vivo, in intact cells, is scarce. In this work we made an attempt to develop a technique for finding calpain substrates in intact Drosophila Schneider S2 cells. The procedure consists in comparative 2D gelelectrophoresis: three identical samples were treated in different ways: A (control, no addition), B, activated (Ca(2+) and ionomycin added), C, inactivated (additions as in B+specific calpain inhibitor). 2D gel pattern were analyzed by densitometry. Spots showing density relation A>B<<C were identified by mass spectroscopy. In a typical run, 11 candidate substrates were recognized; out of these, four were randomly selected: all four were verified to be calpain substrates, by digestion of the recombinant protein with recombinant calpain.
Collapse
|
27
|
Park MW, Emori Y. Drosophila Calpain B is monomeric and autolyzes intramolecularly. J Biochem 2007; 143:217-28. [PMID: 18032413 DOI: 10.1093/jb/mvm211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Drosophila calpains, Calpain A and Calpain B, show typical calpain domain structures similar to mammalian calpains. However, the small subunit of mammalian calpains, shown to be essential in both genetic and biochemical aspects, is absent in Drosophila calpains and is not required for enzymatic activity. How they compensate for the lack of small subunit is mostly unknown. Here we conducted experiments using recombinant Drosophila Calpain B for further characterization of the enzyme with particular focuses on two issues: possibility of homodimerization and mode of autolysis. The native molecular weight of Calpain B indicates that the active enzyme is primarily monomeric. Co-expression of two recombinant Calpain B proteins each with a unique affinity tag and a subsequent single round of affinity tag purification resulted in isolation of only one recombinant calpain type, suggesting there is no homodimeric interaction. Also the C-termini of Drosophila calpains lack many of the key hydrophobic residues considered to be important in the dimerization of mammalian calpains. Further, initial autolysis of Calpain B seems to occur intramolecularly, which supports the monomeric nature of Drosophila calpains. These results strongly suggest that dimerization is not an essential requirement for Drosophila calpains.
Collapse
Affiliation(s)
- Min Woo Park
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | | |
Collapse
|
28
|
Abstract
The process of L1 specification early in plant embryogenesis, and subsequent maintenance and elaboration of epidermal organization, are fundamental to plant growth and fitness. To occur in a co-ordinated fashion, these processes require considerable cell–cell cross-talk. It is perhaps then unsurprising that several classes of plant RLKs (receptor-like kinases), as well as other membrane-localized signalling components, have been implicated both in epidermal specification and in patterning events governing the distribution of epidermal cell types. However, despite our growing knowledge of the roles of these signalling molecules, remarkably little is understood regarding their function at the cellular level. In particular the potential role of regulated proteolytic cleavage in controlling the activity of signalling molecules at the plant plasma membrane has remained largely unaddressed despite its massive importance in signalling in animal systems. Because of the relative physical accessibility of their expression domains, molecules involved in epidermal development present opportunities for investigating mechanisms of cell–cell signalling in planta. Advances in understanding the potential regulatory processing of membrane-localized signalling molecules during epidermal development will be examined using parallels with animal systems to highlight potential future directions for this field of research.
Collapse
Affiliation(s)
- G C Ingram
- Institute for Molecular Plant Science, Rutherford Building, Kings Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
29
|
Kim HW, Chang ES, Mykles DL. Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. ACTA ACUST UNITED AC 2006; 208:3177-97. [PMID: 16081615 DOI: 10.1242/jeb.01754] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Crustacean muscle has four calpain-like proteinase activities (CDP I, IIa, IIb and III) that are involved in molt-induced claw muscle atrophy, as they degrade myofibrillar proteins in vitro and in situ. Using PCR cloning techniques, three full-length calpain cDNAs (Gl-CalpB, Gl-CalpM and Gl-CalpT) were isolated from limb regenerates of the tropical land crab Gecarcinus lateralis. All three had highly conserved catalytic (dII) and C2-like (dIII) domains. Gl-CalpB was classified as a typical, or EF-hand, calpain, as the deduced amino acid sequence had a calmodulin-like domain IV in the C-terminus and was most similar to Drosophila calpains A and B. Based on its estimated mass (approximately 88.9 kDa) and cross-immunoreactivity with a polyclonal antibody raised against Dm-CalpA, Gl-CalpB may encode CDP IIb, which is a homodimer of a 95-kDa subunit. It was expressed in all tissues examined, including skeletal muscle, heart, integument, gill, digestive gland, hindgut, nerve ganglia, gonads and Y-organ (molting gland). Both Gl-CalpM and Gl-CalpT were classified as atypical, or non-EF-hand, calpains, as they lacked a domain IV sequence. Gl-CalpM was a homolog of Ha-CalpM from lobster, based on similarities in deduced amino acid sequence, estimated mass (approximately 65.2 kDa) and structural organization (both were truncated at the C-terminal end of dIII). It was expressed at varying levels in most tissues, except Y-organ. Gl-CalpT (approximately 74.6 kDa) was similar to TRA-3 in the nematode Caenorhabditis elegans; domain IV was replaced by a unique ;T domain' sequence. It was expressed in most tissues, except eyestalk ganglia and Y-organ. The effects of elevated ecdysteroid, induced by eyestalk ablation, on calpain and ecdysone receptor (Gl-EcR) mRNA levels in skeletal muscles were quantified by real-time PCR. At 1 day after eyestalk ablation, Gl-EcR and Gl-CalpT mRNA levels increased 15- and 19.3-fold, respectively, in claw muscle but not in thoracic muscle. At 3 days after eyestalk ablation, Gl-EcR and Gl-CalpT mRNA levels in claw muscle had decreased to 2.8-fold and 4.3-fold higher than those in intact controls, respectively, suggesting a feedback inhibition by ecdysteroid. There was no significant effect of eyestalk ablation on Gl-CalpB and Gl-CalpM mRNA levels. Gl-CalpT and Gl-EcR mRNA levels were significantly correlated in both claw and thoracic muscles from intact and eyestalk-ablated animals. The data suggest that Gl-CalpT is involved in initiation of claw muscle atrophy by ecdysteroids. Premolt reduction in claw muscle mass and concomitant remodeling of the sarcomere probably result from post-transcriptional regulation of calpains.
Collapse
Affiliation(s)
- H-W Kim
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
30
|
Abstract
Calpains, the cytoplasmic Ca2+-activated regulatory proteases, have no simple and clearly definable cleavage site specificity, which is in sharp contrast to digestive (e.g., pancreatic) proteases. For calpains, an approximate 10-aa segment having a variety of sequences and spanning the scissile bond, governs proteolytic cleavage. This permissivity is a precondition for calpains to act on several different substrate proteins in the cell. The specificity of calpain action may be ensured by anchoring/targeting proteins. Intriguingly, the established endogenous inhibitor protein, calpastatin, might also serve as a storage site. Furthermore, specificity may be encoded in the 'goodness' of the undecapeptide sequence in substrate proteins. Novel approaches are needed to reveal how calpains find their substrates in cells at the proper time and location.
Collapse
Affiliation(s)
- Peter Friedrich
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, HU-P.O. Box 7, H-1518 Budapest, Hungary.
| | | |
Collapse
|
31
|
Bozóky Z, Alexa A, Tompa P, Friedrich P. Multiple interactions of the 'transducer' govern its function in calpain activation by Ca2+. Biochem J 2005; 388:741-4. [PMID: 15569003 PMCID: PMC1183452 DOI: 10.1042/bj20041935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Typical calpains in mammals become activated on binding of 8-12 Ca2+ ions per enzyme molecule, giving an example of integrated, manifold regulation by calcium. Besides two identified Ca2+ sites in catalytic domain II and several EF-hand motifs in domains IV and VI, an acidic loop in the centrally positioned domain III seems to harbour Ca2+. The mediator of distant Ca2+-induced structural transitions is an elongated structural element, the 'transducer'. By site-directed mutagenesis along the transducer, we have generated various forms of rat m-calpain in which critical intramolecular interactions, as judged from the X-ray structure, would be abolished or modified. The kinetic parameters of these mutant enzymes support a model featuring shrinkage of transducer as a contributor to structural changes involved in calpain activation.
Collapse
Affiliation(s)
- Zoltán Bozóky
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, 1518 Budapest, P.O. Box 7, Hungary
| | - Anita Alexa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, 1518 Budapest, P.O. Box 7, Hungary
| | - Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, 1518 Budapest, P.O. Box 7, Hungary
| | - Peter Friedrich
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, 1518 Budapest, P.O. Box 7, Hungary
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Friedrich P. The intriguing Ca2+ requirement of calpain activation. Biochem Biophys Res Commun 2004; 323:1131-3. [PMID: 15451413 DOI: 10.1016/j.bbrc.2004.08.194] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Indexed: 10/26/2022]
Abstract
Mammalian ubiquitous micro- and m-calpains, as well as their Drosophila homologs, Calpain A and Calpain B, are Ca(2+)-activated cytoplasmic proteases that act by limited proteolysis of target proteins. Calpains are thought to be part of many cellular signaling pathways. These enzymes, however, require such high Ca(2+) concentration for half-maximal activation in vitro, [Ca(2+)](0.5), that hardly ever occurs in intact cells. This major dilemma has pervaded the literature on calpains for decades. In this paper several considerations are put forward that challenge the orthodox view and envisage mechanisms that may govern calpain action in vivo. The "unphysiologically" high Ca(2+) demand for activation may turn out to be an evolutionarily adjusted safety device.
Collapse
Affiliation(s)
- Peter Friedrich
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary.
| |
Collapse
|