1
|
Iribarren PA, Di Marzio LA, Berazategui MA, Saura A, Coria L, Cassataro J, Rojas F, Navarro M, Alvarez VE. Depolymerization of SUMO chains induces slender to stumpy differentiation in T. brucei bloodstream parasites. PLoS Pathog 2024; 20:e1012166. [PMID: 38635823 PMCID: PMC11060531 DOI: 10.1371/journal.ppat.1012166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Trypanosoma brucei are protozoan parasites that cause sleeping sickness in humans and nagana in cattle. Inside the mammalian host, a quorum sensing-like mechanism coordinates its differentiation from a slender replicative form into a quiescent stumpy form, limiting growth and activating metabolic pathways that are beneficial to the parasite in the insect host. The post-translational modification of proteins with the Small Ubiquitin-like MOdifier (SUMO) enables dynamic regulation of cellular metabolism. SUMO can be conjugated to its targets as a monomer but can also form oligomeric chains. Here, we have investigated the role of SUMO chains in T. brucei by abolishing the ability of SUMO to polymerize. We have found that parasites able to conjugate only SUMO monomers are primed for differentiation. This was demonstrated for monomorphic lines that are normally unable to produce stumpy forms in response to quorum sensing signaling in mice, and also for pleomorphic cell lines in which stumpy cells were observed at unusually low parasitemia levels. SUMO chain mutants showed a stumpy compatible transcriptional profile and better competence to differentiate into procyclics. Our study indicates that SUMO depolymerization may represent a coordinated signal triggered during stumpy activation program.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Andreu Saura
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Lorena Coria
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Federico Rojas
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| |
Collapse
|
2
|
Jing J, Wu N, Xu W, Wang Y, Pawlowski WP, He Y. An F-box protein ACOZ1 functions in crossover formation by ensuring proper chromosome compaction during maize meiosis. THE NEW PHYTOLOGIST 2022; 235:157-172. [PMID: 35322878 DOI: 10.1111/nph.18116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Meiosis is an essential reproductive process to create new genetic variation. During early meiosis, higher order chromosome organization creates a platform for meiotic processes to ensure the accuracy of recombination and chromosome segregation. However, little is known about the regulatory mechanisms underlying dynamic chromosome organization in plant meiosis. Here, we describe abnormal chromosome organization in zygotene1 (ACOZ1), which encodes a canonical F-box protein in maize. In acoz1 mutant meiocytes, chromosomes maintain a leptotene-like state and never compact to a zygotene-like configuration. Telomere bouquet formation and homologous pairing are also distorted and installation of synaptonemal complex ZYP1 protein is slightly defective. Loading of early recombination proteins RAD51 and DMC1 is unaffected, indicating that ACOZ1 is not required for double strand break formation or repair. However, crossover formation is severely disturbed. The ACOZ1 protein localizes on the boundary of chromatin, rather directly to chromosomes. Furthermore, we identified that ACOZ1 interacts with SKP1 through its C-terminus, revealing that it acts as a subunit of the SCF E3 ubiquitin/SUMO ligase complex. Overall, our results suggest that ACOZ1 functions independently from the core meiotic recombination pathway to influence crossover formation by controlling chromosome compaction during maize meiosis.
Collapse
Affiliation(s)
- Juli Jing
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Nan Wu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | | | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
3
|
Abstract
The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
4
|
Kar FM, Hochwagen A. Phospho-Regulation of Meiotic Prophase. Front Cell Dev Biol 2021; 9:667073. [PMID: 33928091 PMCID: PMC8076904 DOI: 10.3389/fcell.2021.667073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York, NY, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
5
|
Bhagwat NR, Owens SN, Ito M, Boinapalli JV, Poa P, Ditzel A, Kopparapu S, Mahalawat M, Davies OR, Collins SR, Johnson JR, Krogan NJ, Hunter N. SUMO is a pervasive regulator of meiosis. eLife 2021; 10:57720. [PMID: 33502312 PMCID: PMC7924959 DOI: 10.7554/elife.57720] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes. To date, only a handful of meiotic SUMO targets have been identified. Here, we delineate a multidimensional SUMO-modified meiotic proteome in budding yeast, identifying 2747 conjugation sites in 775 targets, and defining their relative levels and dynamics. Modified sites cluster in disordered regions and only a minority match consensus motifs. Target identities and modification dynamics imply that SUMOylation regulates all levels of chromosome organization and each step of meiotic prophase I. Execution-point analysis confirms these inferences, revealing functions for SUMO in S-phase, the initiation of recombination, chromosome synapsis and crossing over. K15-linked SUMO chains become prominent as chromosomes synapse and recombine, consistent with roles in these processes. SUMO also modifies ubiquitin, forming hybrid oligomers with potential to modulate ubiquitin signaling. We conclude that SUMO plays diverse and unanticipated roles in regulating meiotic chromosome metabolism. Most mammalian, yeast and other eukaryote cells have two sets of chromosomes, one from each parent, which contain all the cell’s DNA. Sex cells – like the sperm and egg – however, have half the number of chromosomes and are formed by a specialized type of cell division known as meiosis. At the start of meiosis, each cell replicates its chromosomes so that it has twice the amount of DNA. The cell then undergoes two rounds of division to form sex cells which each contain only one set of chromosomes. Before the cell divides, the two duplicated sets of chromosomes pair up and swap sections of their DNA. This exchange allows each new sex cell to have a unique combination of DNA, resulting in offspring that are genetically distinct from their parents. This complex series of events is tightly regulated, in part, by a protein called the 'small ubiquitin-like modifier' (or SUMO for short), which attaches itself to other proteins and modifies their behavior. This process, known as SUMOylation, can affect a protein’s stability, where it is located in the cell and how it interacts with other proteins. However, despite SUMO being known as a key regulator of meiosis, only a handful of its protein targets have been identified. To gain a better understanding of what SUMO does during meiosis, Bhagwat et al. set out to find which proteins are targeted by SUMO in budding yeast and to map the specific sites of modification. The experiments identified 2,747 different sites on 775 different proteins, suggesting that SUMO regulates all aspects of meiosis. Consistently, inactivating SUMOylation at different times revealed SUMO plays a role at every stage of meiosis, including the replication of DNA and the exchanges between chromosomes. In depth analysis of the targeted proteins also revealed that SUMOylation targets different groups of proteins at different stages of meiosis and interacts with other protein modifications, including the ubiquitin system which tags proteins for destruction. The data gathered by Bhagwat et al. provide a starting point for future research into precisely how SUMO proteins control meiosis in yeast and other organisms. In humans, errors in meiosis are the leading cause of pregnancy loss and congenital diseases. Most of the proteins identified as SUMO targets in budding yeast are also present in humans. So, this research could provide a platform for medical advances in the future. The next step is to study mammalian models, such as mice, to confirm that the regulation of meiosis by SUMO is the same in mammals as in yeast.
Collapse
Affiliation(s)
- Nikhil R Bhagwat
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Shannon N Owens
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Masaru Ito
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Jay V Boinapalli
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Philip Poa
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Alexander Ditzel
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Srujan Kopparapu
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Meghan Mahalawat
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Owen Richard Davies
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Sean R Collins
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States.,Department of Molecular & Cellular Biology, University of California Davis, Davis, United States
| |
Collapse
|
6
|
Kurdzo EL, Chuong HH, Evatt JM, Dawson DS. A ZIP1 separation-of-function allele reveals that centromere pairing drives meiotic segregation of achiasmate chromosomes in budding yeast. PLoS Genet 2018; 14:e1007513. [PMID: 30091974 PMCID: PMC6103513 DOI: 10.1371/journal.pgen.1007513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/21/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022] Open
Abstract
In meiosis I, homologous chromosomes segregate away from each other-the first of two rounds of chromosome segregation that allow the formation of haploid gametes. In prophase I, homologous partners become joined along their length by the synaptonemal complex (SC) and crossovers form between the homologs to generate links called chiasmata. The chiasmata allow the homologs to act as a single unit, called a bivalent, as the chromosomes attach to the microtubules that will ultimately pull them away from each other at anaphase I. Recent studies, in several organisms, have shown that when the SC disassembles at the end of prophase, residual SC proteins remain at the homologous centromeres providing an additional link between the homologs. In budding yeast, this centromere pairing is correlated with improved segregation of the paired partners in anaphase. However, the causal relationship of prophase centromere pairing and subsequent disjunction in anaphase has been difficult to demonstrate as has been the relationship between SC assembly and the assembly of the centromere pairing apparatus. Here, a series of in-frame deletion mutants of the SC component Zip1 were used to address these questions. The identification of a separation-of-function allele that disrupts centromere pairing, but not SC assembly, has made it possible to demonstrate that centromere pairing and SC assembly have mechanistically distinct features and that the centromere pairing function of Zip1 drives disjunction of the paired partners in anaphase I.
Collapse
Affiliation(s)
- Emily L. Kurdzo
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Hoa H. Chuong
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Jared M. Evatt
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Dean S. Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| |
Collapse
|
7
|
Iribarren PA, Di Marzio LA, Berazategui MA, De Gaudenzi JG, Alvarez VE. SUMO polymeric chains are involved in nuclear foci formation and chromatin organization in Trypanosoma brucei procyclic forms. PLoS One 2018; 13:e0193528. [PMID: 29474435 PMCID: PMC5825156 DOI: 10.1371/journal.pone.0193528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
SUMOylation is a post-translational modification conserved in eukaryotic organisms that involves the covalent attachment of the small ubiquitin-like protein SUMO to internal lysine residues in target proteins. This tag usually alters the interaction surface of the modified protein and can be translated into changes in its biological activity, stability or subcellular localization, among other possible outputs. SUMO can be attached as a single moiety or as SUMO polymers in case there are internal acceptor sites in SUMO itself. These chains have been shown to be important for proteasomal degradation as well as for the formation of subnuclear structures such as the synaptonemal complex in Saccharomyces cerevisiae or promyelocytic leukemia nuclear bodies in mammals. In this work, we have examined SUMO chain formation in the protozoan parasite Trypanosoma brucei. Using a recently developed bacterial strain engineered to produce SUMOylated proteins we confirmed the ability of TbSUMO to form polymers and determined the type of linkage using site-directed mutational analysis. By generating transgenic procyclic parasites unable to form chains we demonstrated that although not essential for normal growth, SUMO polymerization determines the localization of the modified proteins in the nucleus. In addition, FISH analysis of telomeres showed a differential positioning depending on the polySUMOylation abilities of the cells. Thus, our observations suggest that TbSUMO chains might play a role in establishing interaction platforms contributing to chromatin organization.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Javier Gerardo De Gaudenzi
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| |
Collapse
|
8
|
Proteasomes on the chromosome. Cell Res 2017; 27:602-603. [PMID: 28266542 DOI: 10.1038/cr.2017.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Targeted proteolysis plays an important role in the execution and regulation of many cellular events. Two recent papers in Science identify novel roles for proteasome-mediated proteolysis in homologous chromosome pairing, recombination, and segregation during meiosis.
Collapse
|
9
|
Rao HBDP, Qiao H, Bhatt SK, Bailey LRJ, Tran HD, Bourne SL, Qiu W, Deshpande A, Sharma AN, Beebout CJ, Pezza RJ, Hunter N. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 2017; 355:403-407. [PMID: 28059716 PMCID: PMC5569317 DOI: 10.1126/science.aaf6407] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/12/2016] [Accepted: 12/14/2016] [Indexed: 01/12/2023]
Abstract
Meiosis produces haploid gametes through a succession of chromosomal events, including pairing, synapsis, and recombination. Mechanisms that orchestrate these events remain poorly understood. We found that the SUMO (small ubiquitin-like modifier)-modification and ubiquitin-proteasome systems regulate the major events of meiotic prophase in mouse. Interdependent localization of SUMO, ubiquitin, and proteasomes along chromosome axes was mediated largely by RNF212 and HEI10, two E3 ligases that are also essential for crossover recombination. RNF212-dependent SUMO conjugation effected a checkpointlike process that stalls recombination by rendering the turnover of a subset of recombination factors dependent on HEI10-mediated ubiquitylation. We propose that SUMO conjugation establishes a precondition for designating crossover sites via selective protein stabilization. Thus, meiotic chromosome axes are hubs for regulated proteolysis via SUMO-dependent control of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- H B D Prasada Rao
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Huanyu Qiao
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Shubhang K Bhatt
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Logan R J Bailey
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Hung D Tran
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Sarah L Bourne
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Wendy Qiu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Anusha Deshpande
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Ajay N Sharma
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Connor J Beebout
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Roberto J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| |
Collapse
|
10
|
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a016626. [PMID: 25986558 DOI: 10.1101/cshperspect.a016626] [Citation(s) in RCA: 512] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
Collapse
Affiliation(s)
- Denise Zickler
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
11
|
Wright KM, Arnold B, Xue K, Šurinová M, O'Connell J, Bomblies K. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa. Mol Biol Evol 2014; 32:944-55. [PMID: 25543117 DOI: 10.1093/molbev/msu398] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Meiotic chromosome segregation is critical for fertility across eukaryotes, and core meiotic processes are well conserved even between kingdoms. Nevertheless, recent work in animals has shown that at least some meiosis genes are highly diverse or strongly differentiated among populations. What drives this remains largely unknown. We previously showed that autotetraploid Arabidopsis arenosa evolved stable meiosis, likely through reduced crossover rates, and that associated with this there is strong evidence for selection in a subset of meiosis genes known to affect axis formation, synapsis, and crossover frequency. Here, we use genome-wide data to study the molecular evolution of 70 meiosis genes in a much wider sample of A. arenosa. We sample the polyploid lineage, a diploid lineage from the Carpathian Mountains, and a more distantly related diploid lineage from the adjacent, but biogeographically distinct Pannonian Basin. We find that not only did selection act on meiosis genes in the polyploid lineage but also independently on a smaller subset of meiosis genes in Pannonian diploids. Functionally related genes are targeted by selection in these distinct contexts, and in two cases, independent sweeps occurred in the same loci. The tetraploid lineage has sustained selection on more genes, has more amino acid changes in each, and these more often affect conserved or potentially functional sites. We hypothesize that Pannonian diploid and tetraploid A. arenosa experienced selection on structural proteins that mediate sister chromatid cohesion, the formation of meiotic chromosome axes, and synapsis, likely for different underlying reasons.
Collapse
Affiliation(s)
- Kevin M Wright
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Brian Arnold
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Katherine Xue
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Maria Šurinová
- Institute of Botany, Academy of Sciences of the Czech Republic, Pruhonice, Czech Republic
| | - Jeremy O'Connell
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Kirsten Bomblies
- Department of Evolutionary and Organismic Biology, Harvard University
| |
Collapse
|
12
|
The CSN/COP9 signalosome regulates synaptonemal complex assembly during meiotic prophase I of Caenorhabditis elegans. PLoS Genet 2014; 10:e1004757. [PMID: 25375142 PMCID: PMC4222726 DOI: 10.1371/journal.pgen.1004757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/15/2014] [Indexed: 11/22/2022] Open
Abstract
The synaptonemal complex (SC) is a conserved protein structure that holds homologous chromosome pairs together throughout much of meiotic prophase I. It is essential for the formation of crossovers, which are required for the proper segregation of chromosomes into gametes. The assembly of the SC is likely to be regulated by post-translational modifications. The CSN/COP9 signalosome has been shown to act in many pathways, mainly via the ubiquitin degradation/proteasome pathway. Here we examine the role of the CSN/COP9 signalosome in SC assembly in the model organism C. elegans. Our work shows that mutants in three subunits of the CSN/COP9 signalosome fail to properly assemble the SC. In these mutants, SC proteins aggregate, leading to a decrease in proper pairing between homologous chromosomes. The reduction in homolog pairing also results in an accumulation of recombination intermediates and defects in repair of meiotic DSBs to form the designated crossovers. The effect of the CSN/COP9 signalosome mutants on synapsis and crossover formation is due to increased neddylation, as reducing neddylation in these mutants can partially suppress their phenotypes. We also find a marked increase in apoptosis in csn mutants that specifically eliminates nuclei with aggregated SC proteins. csn mutants exhibit defects in germline proliferation, and an almost complete pachytene arrest due to an inability to activate the MAPK pathway. The work described here supports a previously unknown role for the CSN/COP9 signalosome in chromosome behavior during meiotic prophase I. Meiosis is a cellular division required for the formation of gametes, and therefore sexual reproduction. Accurate chromosome segregation is dependent on the formation of crossovers, the exchange of DNA between homologous chromosomes. A key process in the formation of crossovers is the assembly of the synaptonemal complex (SC) between homologs during prophase I. How functional SC structure forms is still not well understood. Here we identify CSN/COP9 signalosome complex as having a clear role in chromosome synapsis. In CSN/COP9 mutants, SC proteins aggregate and fail to properly assemble on homologous chromosomes. This leads to defects in homolog pairing, repair of meiotic DNA damage and crossover formation. The data in this paper suggest that the role of the CSN/COP9 signalosome is to prevent the aggregation of central region proteins during SC assembly.
Collapse
|
13
|
Fujiwara Y, Matsumoto H, Akiyama K, Srivastava A, Chikushi M, Ann Handel M, Kunieda T. An ENU-induced mutation in the mouse Rnf212 gene is associated with male meiotic failure and infertility. Reproduction 2014; 149:67-74. [PMID: 25342176 DOI: 10.1530/rep-14-0122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ENU-induced repro57 mutation was identified in an unbiased screen for the discovery of novel genes for fertility. Male repro57 homozygous mice are infertile and exhibit significantly reduced testis weight compared with WT mice. Histological examination of mutant testes revealed that spermatocytes degenerated during late prophase, and no mature spermatozoa were found in the seminiferous epithelium, suggesting that infertility is caused by the arrest of spermatogenesis at late meiotic prophase. Consistent with this hypothesis, the number of foci with MLH1, a protein essential for crossing over, is greatly reduced in repro57 mutant spermatocytes, which also lack chiasmata between homologs and exhibit premature dissociation of XY chromosomes. In repro57 mutant mice, we identified a mutation in the Rnf212 gene, encoding Ring finger protein 212. The overall phenotype of repro57 mice is consistent with the recently reported phenotype of the Rnf212 knockout mice; slight differences may be due to genetic background effects. Thus, the repro57 nonsense mutation provides a new allele of the mouse Rnf212 gene.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hirokazu Matsumoto
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kouyou Akiyama
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Anuj Srivastava
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mizuho Chikushi
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mary Ann Handel
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tetsuo Kunieda
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Abstract
In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females.
Collapse
|
15
|
Jongjitwimol J, Feng M, Zhou L, Wilkinson O, Small L, Baldock R, Taylor DL, Smith D, Bowler LD, Morley SJ, Watts FZ. The S. pombe translation initiation factor eIF4G is Sumoylated and associates with the SUMO protease Ulp2. PLoS One 2014; 9:e94182. [PMID: 24818994 PMCID: PMC4018355 DOI: 10.1371/journal.pone.0094182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/13/2014] [Indexed: 12/03/2022] Open
Abstract
SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific proteases. The processes of sumoylation and desumoylation have well documented roles in DNA metabolism and in the maintenance of chromatin structure. To further analyse the role of this modification, we have purified protein complexes containing the S. pombe SUMO protease, Ulp2. These complexes contain proteins required for ribosome biogenesis, RNA stability and protein synthesis. Here we have focussed on two translation initiation factors that we identified as co-purifying with Ulp2, eIF4G and eIF3h. We demonstrate that eIF4G, but not eIF3h, is sumoylated. This modification is increased under conditions that produce cytoplasmic stress granules. Consistent with this we observe partial co-localisation of eIF4G and SUMO in stressed cells. Using HeLa cells, we demonstrate that human eIF4GI is also sumoylated; in vitro studies indicate that human eIF4GI is modified on K1368 and K1588, that are located in the C-terminal eIF4A- and Mnk-binding sites respectively.
Collapse
Affiliation(s)
- Jirapas Jongjitwimol
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Min Feng
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Oliver Wilkinson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lauren Small
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Robert Baldock
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Deborah L. Taylor
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Duncan Smith
- Paterson Institute for Cancer Research, The University of Manchester, Manchester, United Kingdom
| | - Lucas D. Bowler
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Simon J. Morley
- Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Felicity Z. Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Copsey A, Tang S, Jordan PW, Blitzblau HG, Newcombe S, Chan ACH, Newnham L, Li Z, Gray S, Herbert AD, Arumugam P, Hochwagen A, Hunter N, Hoffmann E. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet 2013; 9:e1004071. [PMID: 24385939 PMCID: PMC3873251 DOI: 10.1371/journal.pgen.1004071] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022] Open
Abstract
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4(Eme1). Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.
Collapse
Affiliation(s)
- Alice Copsey
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Shangming Tang
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Philip W. Jordan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hannah G. Blitzblau
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sonya Newcombe
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Andrew Chi-ho Chan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Louise Newnham
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Zhaobo Li
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Stephen Gray
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Alex D. Herbert
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Prakash Arumugam
- Department of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andreas Hochwagen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
- Department of Biology, New York University, New York, New York, United States of America
- Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, United States of America
- Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, California, United States of America
| | - Eva Hoffmann
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
17
|
Obeso D, Pezza RJ, Dawson D. Couples, pairs, and clusters: mechanisms and implications of centromere associations in meiosis. Chromosoma 2013; 123:43-55. [PMID: 24126501 DOI: 10.1007/s00412-013-0439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.
Collapse
Affiliation(s)
- David Obeso
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | | |
Collapse
|
18
|
Voelkel-Meiman K, Taylor LF, Mukherjee P, Humphryes N, Tsubouchi H, MacQueen AJ. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet 2013; 9:e1003837. [PMID: 24098146 PMCID: PMC3789832 DOI: 10.1371/journal.pgen.1003837] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
The synaptonemal complex (SC) is a widely conserved structure that mediates the intimate alignment of homologous chromosomes during meiotic prophase and is required for proper homolog segregation at meiosis I. However, fundamental details of SC architecture and assembly remain poorly understood. The coiled-coil protein, Zip1, is the only component whose arrangement within the mature SC of budding yeast has been extensively characterized. It has been proposed that the Small Ubiquitin-like MOdifier, SUMO, plays a role in SC assembly by linking chromosome axes with Zip1's C termini. The role of SUMO in SC structure has not been directly tested, however, because cells lacking SUMO are inviable. Here, we provide direct evidence for SUMO's function in SC assembly. A meiotic smt3 reduction-of-function strain displays reduced sporulation, abnormal levels of crossover recombination, and diminished SC assembly. SC structures are nearly absent when induced at later meiotic time points in the smt3 reduction-of-function background. Using Structured Illumination Microscopy we furthermore determine the position of SUMO within budding yeast SC structure. In contrast to previous models that positioned SUMO near Zip1's C termini, we demonstrate that SUMO lies at the midline of SC central region proximal to Zip1's N termini, within a subdomain called the “central element”. The recently identified SUMOylated SC component, Ecm11, also localizes to the SC central element. Finally, we show that SUMO, Ecm11, and even unSUMOylatable Ecm11 exhibit Zip1-like ongoing incorporation into previously established SCs during meiotic prophase and that the relative abundance of SUMO and Ecm11 correlates with Zip1's abundance within SCs of varying Zip1 content. We discuss a model in which central element proteins are core building blocks that stabilize the architecture of SC near Zip1's N termini, and where SUMOylation may occur subsequent to the incorporation of components like Ecm11 into an SC precursor structure. The meiotic cell cycle enables sexually reproducing organisms to generate reproductive cells with half their chromosome complement. Chromosome ploidy is reduced during meiosis by virtue of prior associations established between homologous chromosomes (homologs). Such associations, which are ultimately secured by crossover recombination events, allow homologs to achieve an opposing orientation and segregate from one another at meiosis I. A multimeric protein structure, the synaptonemal complex (SC), mediates the intimate, lengthwise alignment of homologs during meiotic prophase and forms the context in which crossovers mature. The SC's tripartite structure is widely conserved but its composition and architecture remain incompletely understood in any organism. The Small Ubiquitin-like MOdifier (SUMO) localizes to SC in budding yeast. We show that SUMO is required for assembling mature SC and we furthermore demonstrate that SUMO and the recently identified SUMOylated protein, Ecm11, are components of the central element substructure of the budding yeast SC. Our findings suggest that SUMO and Ecm11 are core building blocks of SC, yet our data also suggest that SUMOylation may occur subsequent to Ecm11's incorporation into the SC structure. Finally, our study highlights Structured Illumination as a powerful tool for mapping the fine structure of budding yeast SC.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Louis F. Taylor
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Pritam Mukherjee
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Neil Humphryes
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hideo Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
19
|
|
20
|
Carlton PM. Application of advanced fluorescence microscopy to the structure of meiotic chromosomes. Biophys Rev 2013; 5:313-322. [PMID: 28510112 DOI: 10.1007/s12551-013-0116-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/19/2013] [Indexed: 12/30/2022] Open
Abstract
Chromosomes undergoing meiosis are defined by a macromolecular protein assembly called the synaptonemal complex which holds homologs together and carries out important meiotic functions. By retaining the molecular specificity, multiplexing ability, and in situ imaging capabilities of fluorescence microscopy, but with vastly increased resolution, 3D-SIM and other superresolution techniques are poised to make significant discoveries about the structure and function of the synaptonemal complex. This review discusses recent developments in this field and poses questions approachable with current and future technology.
Collapse
Affiliation(s)
- Peter M Carlton
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan.
| |
Collapse
|
21
|
Davies OR, Maman JD, Pellegrini L. Structural analysis of the human SYCE2-TEX12 complex provides molecular insights into synaptonemal complex assembly. Open Biol 2012; 2:120099. [PMID: 22870393 PMCID: PMC3411106 DOI: 10.1098/rsob.120099] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/26/2012] [Indexed: 11/12/2022] Open
Abstract
The successful completion of meiosis is essential for all sexually reproducing organisms. The synaptonemal complex (SC) is a large proteinaceous structure that holds together homologous chromosomes during meiosis, providing the structural framework for meiotic recombination and crossover formation. Errors in SC formation are associated with infertility, recurrent miscarriage and aneuploidy. The current lack of molecular information about the dynamic process of SC assembly severely restricts our understanding of its function in meiosis. Here, we provide the first biochemical and structural analysis of an SC protein component and propose a structural basis for its function in SC assembly. We show that human SC proteins SYCE2 and TEX12 form a highly stable, constitutive complex, and define the regions responsible for their homotypic and heterotypic interactions. Biophysical analysis reveals that the SYCE2-TEX12 complex is an equimolar hetero-octamer, formed from the association of an SYCE2 tetramer and two TEX12 dimers. Electron microscopy shows that biochemically reconstituted SYCE2-TEX12 complexes assemble spontaneously into filamentous structures that resemble the known physical features of the SC central element (CE). Our findings can be combined with existing biological data in a model of chromosome synapsis driven by growth of SYCE2-TEX12 higher-order structures within the CE of the SC.
Collapse
Affiliation(s)
- Owen R Davies
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Old Addenbrookes Site, Cambridge CB2 1GA, UK.
| | | | | |
Collapse
|
22
|
Fritsche M, Reinholdt LG, Lessard M, Handel MA, Bewersdorf J, Heermann DW. The impact of entropy on the spatial organization of synaptonemal complexes within the cell nucleus. PLoS One 2012; 7:e36282. [PMID: 22574147 PMCID: PMC3344857 DOI: 10.1371/journal.pone.0036282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/03/2012] [Indexed: 01/08/2023] Open
Abstract
We employ 4Pi-microscopy to study SC organization in mouse spermatocyte nuclei allowing for the three-dimensional reconstruction of the SC's backbone arrangement. Additionally, we model the SCs in the cell nucleus by confined, self-avoiding polymers, whose chain ends are attached to the envelope of the confining cavity and diffuse along it. This work helps to elucidate the role of entropy in shaping pachytene SC organization. The framework provided by the complex interplay between SC polymer rigidity, tethering and confinement is able to qualitatively explain features of SC organization, such as mean squared end-to-end distances, mean squared center-of-mass distances, or SC density distributions. However, it fails in correctly assessing SC entanglement within the nucleus. In fact, our analysis of the 4Pi-microscopy images reveals a higher ordering of SCs within the nuclear volume than what is expected by our numerical model. This suggests that while effects of entropy impact SC organization, the dedicated action of proteins or actin cables is required to fine-tune the spatial ordering of SCs within the cell nucleus.
Collapse
Affiliation(s)
- Miriam Fritsche
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Xie WJ, Shi DY, Cai ZX, Chen XY, Jin WW. [Organization, function and genetic controlling of synaptonemal complex]. YI CHUAN = HEREDITAS 2012; 34:167-76. [PMID: 22382058 DOI: 10.3724/sp.j.1005.2012.00167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synaptonemal complex (SC) is a super protein lattice that connects paired homologous chromosomes in most meiotic systems. This special organization is related to the meiosis processes such as homologous chromosomes pairing, synapsis, recombination, segregation, etc. Flaws of it would lead the meiocytes to apoptosis, which contributes to sterility. In recent years, the study of this complex has been a hotspot in meiosis research, but little was known about its exact mechanism. This review summarized the organization, function, and genetics of this complex with recent advances. Prospects of its further study were also briefly discussed..
Collapse
Affiliation(s)
- Wen-Jun Xie
- China Agricultural University, Beijing, China.
| | | | | | | | | |
Collapse
|
24
|
Fukuda T, Pratto F, Schimenti JC, Turner JMA, Camerini-Otero RD, Höög C. Phosphorylation of chromosome core components may serve as axis marks for the status of chromosomal events during mammalian meiosis. PLoS Genet 2012; 8:e1002485. [PMID: 22346761 PMCID: PMC3276554 DOI: 10.1371/journal.pgen.1002485] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination and chromosome synapsis between homologous chromosomes are essential for proper chromosome segregation at the first meiotic division. While recombination and synapsis, as well as checkpoints that monitor these two events, take place in the context of a prophase I-specific axial chromosome structure, it remains unclear how chromosome axis components contribute to these processes. We show here that many protein components of the meiotic chromosome axis, including SYCP2, SYCP3, HORMAD1, HORMAD2, SMC3, STAG3, and REC8, become post-translationally modified by phosphorylation during the prophase I stage. We found that HORMAD1 and SMC3 are phosphorylated at a consensus site for the ATM/ATR checkpoint kinase and that the phosphorylated forms of HORMAD1 and SMC3 localize preferentially to unsynapsed chromosomal regions where synapsis has not yet occurred, but not to synapsed or desynapsed regions. We investigated the genetic requirements for the phosphorylation events and revealed that the phosphorylation levels of HORMAD1, HORMAD2, and SMC3 are dramatically reduced in the absence of initiation of meiotic recombination, whereas BRCA1 and SYCP3 are required for normal levels of phosphorylation of HORMAD1 and HORMAD2, but not of SMC3. Interestingly, reduced HORMAD1 and HORMAD2 phosphorylation is associated with impaired targeting of the MSUC (meiotic silencing of unsynapsed chromatin) machinery to unsynapsed chromosomes, suggesting that these post-translational events contribute to the regulation of the synapsis surveillance system. We propose that modifications of chromosome axis components serve as signals that facilitate chromosomal events including recombination, checkpoint control, transcription, and synapsis regulation.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (TF); (CH)
| | - Florencia Pratto
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John C. Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - James M. A. Turner
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council, National Institute for Medical Research, London, United Kingdom
| | - R. Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (TF); (CH)
| |
Collapse
|
25
|
Tanneti N, Landy K, Joyce E, McKim K. A Pathway for Synapsis Initiation during Zygotene in Drosophila Oocytes. Curr Biol 2011; 21:1852-7. [DOI: 10.1016/j.cub.2011.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 10/15/2022]
|