1
|
Foresi N, De Marco MA, Del Castello F, Ramirez L, Nejamkin A, Calo G, Grimsley N, Correa-Aragunde N, Martínez-Noël GMA. The tiny giant of the sea, Ostreococcus's unique adaptations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108661. [PMID: 38735153 DOI: 10.1016/j.plaphy.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.
Collapse
Affiliation(s)
- Noelia Foresi
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina.
| | - María Agustina De Marco
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | | | - Leonor Ramirez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Andres Nejamkin
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina
| | - Gonzalo Calo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | - Nigel Grimsley
- CNRS, LBBM, Sorbonne Université OOB, 1 Avenue de Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | | | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina.
| |
Collapse
|
2
|
Heltberg MS, Jiang Y, Fan Y, Zhang Z, Nordentoft MS, Lin W, Qian L, Ouyang Q, Jensen MH, Wei P. Coupled oscillator cooperativity as a control mechanism in chronobiology. Cell Syst 2023; 14:382-391.e5. [PMID: 37201507 DOI: 10.1016/j.cels.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/16/2022] [Accepted: 04/04/2023] [Indexed: 05/20/2023]
Abstract
Control of dynamical processes is vital for maintaining correct cell regulation and cell-fate decisions. Numerous regulatory networks show oscillatory behavior; however, our knowledge of how one oscillator behaves when stimulated by two or more external oscillatory signals is still missing. We explore this problem by constructing a synthetic oscillatory system in yeast and stimulate it with two external oscillatory signals. Letting model verification and prediction operate in a tight interplay with experimental observations, we find that stimulation with two external signals expands the plateau of entrainment and reduces the fluctuations of oscillations. Furthermore, by adjusting the phase differences of external signals, one can control the amplitude of oscillations, which is understood through the signal delay of the unperturbed oscillatory network. With this we reveal a direct amplitude dependency of downstream gene transcription. Taken together, these results suggest a new path to control oscillatory systems by coupled oscillator cooperativity.
Collapse
Affiliation(s)
- Mathias S Heltberg
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yuanxu Jiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingying Fan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhibo Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | | | - Wei Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Long Qian
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Iglesias Pastrana C, Navas González FJ, Delgado Bermejo JV, Ciani E. Lunar Cycle, Climate, and Onset of Parturition in Domestic Dromedary Camels: Implications of Species-Specific Metabolic Economy and Social Ecology. BIOLOGY 2023; 12:biology12040607. [PMID: 37106807 PMCID: PMC10136027 DOI: 10.3390/biology12040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Given energy costs for gestating and caring for male offspring are higher than those of female newborns, external environmental conditions might be regarded as likely to affect the timing of delivery processes differentially depending on the sex of the newborn calf to be delivered. The aim of the present paper is to evaluate the association between environmental stressors such as the moon phase and weather-related factors and the onset of labor in female dromedaries. A binary logistic regression model was developed to find the most parsimonious set of variables that are most effective in predicting the probability for a gravid female dromedary to give birth to a male or a female calf, assuming that higher gestational costs and longer labor times are ascribed to the production of a male offspring. Although the differences in the quantitative distribution of spontaneous onset of labor across lunar phases and the mean climate per onset event along the whole study period were deemed nonsignificant (p > 0.05), a non-negligible prediction effect of a new moon, mean wind speed and maximum wind gust was present. At slightly brighter nights and lower mean wind speeds, a calf is more likely to be male. This microevolutionary response to the external environment may have been driven by physiological and behavioral adaptation of metabolic economy and social ecology to give birth to cooperative groups with the best possible reduction of thermoregulatory demands. Model performance indexes then highlighted the heterothermic character of camels to greatly minimize the impact of the external environment. The overall results will also enrich the general knowledge of the interplay between homeostasis and arid and semi-arid environments.
Collapse
Affiliation(s)
- Carlos Iglesias Pastrana
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain
| | | | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari 'Aldo Moro', 70125 Bari, Italy
| |
Collapse
|
4
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Macdonald JFH, Krohn I, Streit WR. Screening Metagenomes for Algae Cell Wall Carbohydrates Degrading Hydrolases in Enrichment Cultures. Methods Mol Biol 2023; 2555:125-137. [PMID: 36306083 DOI: 10.1007/978-1-0716-2795-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sustainable use of natural products is one of the key challenges for the future. An increasing focus is on marine organic matter, mostly algae. New biotechnological tools for processing high amounts of micro- and macroalgae are necessary for efficient industrial degradation of marine matter. Secreted glycosyl hydrolases can be enriched and tested on the specific algae cell wall polymers of all algae groups (Rhodophyta; Phaeophyceae; Chlorophyta/Charophyta). Metagenomic analyses established new possibilities to screen algae-associated microbiomes for novel degrading enzymes in combination with sequence-based function prediction.
Collapse
Affiliation(s)
- Jascha F H Macdonald
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
| | - Ines Krohn
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Sharma S, Sanyal SK, Sushmita K, Chauhan M, Sharma A, Anirudhan G, Veetil SK, Kateriya S. Modulation of Phototropin Signalosome with Artificial Illumination Holds Great Potential in the Development of Climate-Smart Crops. Curr Genomics 2021; 22:181-213. [PMID: 34975290 PMCID: PMC8640849 DOI: 10.2174/1389202922666210412104817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Changes in environmental conditions like temperature and light critically influence crop production. To deal with these changes, plants possess various photoreceptors such as Phototropin (PHOT), Phytochrome (PHY), Cryptochrome (CRY), and UVR8 that work synergistically as sensor and stress sensing receptors to different external cues. PHOTs are capable of regulating several functions like growth and development, chloroplast relocation, thermomorphogenesis, metabolite accumulation, stomatal opening, and phototropism in plants. PHOT plays a pivotal role in overcoming the damage caused by excess light and other environmental stresses (heat, cold, and salinity) and biotic stress. The crosstalk between photoreceptors and phytohormones contributes to plant growth, seed germination, photo-protection, flowering, phototropism, and stomatal opening. Molecular genetic studies using gene targeting and synthetic biology approaches have revealed the potential role of different photoreceptor genes in the manipulation of various beneficial agronomic traits. Overexpression of PHOT2 in Fragaria ananassa leads to the increase in anthocyanin content in its leaves and fruits. Artificial illumination with blue light alone and in combination with red light influence the growth, yield, and secondary metabolite production in many plants, while in algal species, it affects growth, chlorophyll content, lipid production and also increases its bioremediation efficiency. Artificial illumination alters the morphological, developmental, and physiological characteristics of agronomic crops and algal species. This review focuses on PHOT modulated signalosome and artificial illumination-based photo-biotechnological approaches for the development of climate-smart crops.
Collapse
Affiliation(s)
- Sunita Sharma
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sibaji K. Sanyal
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kumari Sushmita
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Gireesh Anirudhan
- Integrated Science Education and Research Centre (ISERC), Institute of Science (Siksha Bhavana), Visva Bharati (A Central University), Santiniketan (PO), West Bengal, 731235, India
| | - Sindhu K. Veetil
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Kay H, Grünewald E, Feord HK, Gil S, Peak-Chew SY, Stangherlin A, O'Neill JS, van Ooijen G. Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms. Commun Biol 2021; 4:1147. [PMID: 34593975 PMCID: PMC8484446 DOI: 10.1038/s42003-021-02680-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels. Holly Kay, Ellen Grünewald, et al. provide an in-depth examination of the proteome in the eukaryotic green alga, Ostreococcus tauri, under circadian constant light or cycling diurnal light-dark conditions. They observe that there is little overlap between mRNA and protein expression rhythms, or the diurnal and circadian proteome, suggesting that the cellular spatiotemporal proteome is shaped through rhythmic regulation at multiple stages of transcription and translation.
Collapse
Affiliation(s)
- Holly Kay
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Helen K Feord
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sergio Gil
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
8
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
9
|
Tsunoda SP, Sugiura M, Kandori H. Molecular Properties and Optogenetic Applications of Enzymerhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:153-165. [PMID: 33398812 DOI: 10.1007/978-981-15-8763-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cyclic nucleotides cAMP and cGMP are ubiquitous secondary messengers that regulate multiple biological functions including gene expression, differentiation, proliferation, and cell survival. In sensory neurons, cyclic nucleotides are responsible for signal modulation, amplification, and encoding. For spatial and temporal manipulation of cyclic nucleotide dynamics, optogenetics have a great advantage over pharmacological approaches. Enzymerhodopsins are a unique family of microbial rhodopsins. These molecules are made up of a membrane-embedded rhodopsin domain, which binds an all trans-retinal to form a chromophore, and a cytoplasmic water-soluble catalytic domain. To date, three kinds of molecules have been identified from lower eukaryotes such as fungi, algae, and flagellates. Among these, histidine kinase rhodopsin (HKR) is a light-inhibited guanylyl cyclase. Rhodopsin GC (Rh-GC) functions as a light-activated guanylyl cyclase, while rhodopsin PDE (Rh-PDE) functions as a light-activated phosphodiesterase that degrades cAMP and cGMP. These enzymerhodopsins have great potential in optogenetic applications for manipulating the intracellular cyclic nucleotide dynamics of living cells. Here we introduce the molecular function and applicability of these molecules.
Collapse
Affiliation(s)
- Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan. .,JST PRESTO, Saitama, Japan.
| | - Masahiro Sugiura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
10
|
Carvalho Cabral P, Olivier M, Cermakian N. The Complex Interplay of Parasites, Their Hosts, and Circadian Clocks. Front Cell Infect Microbiol 2019; 9:425. [PMID: 31921702 PMCID: PMC6920103 DOI: 10.3389/fcimb.2019.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
Parasites have evolved various mechanisms to favor infection of their hosts and enhance the success of the infection. In this respect, time-of-day effects were found during the course of parasitic infections, which can be caused or controlled by circadian rhythms in the physiology of their vertebrate hosts. These include circadian clock-controlled rhythms in metabolism and in immune responses. Conversely, parasites can also modulate their hosts' behavioral and cellular rhythms. Lastly, parasites themselves were in some cases shown to possess their own circadian clock mechanisms, which can influence their capacity to infect their hosts. A better knowledge of the circadian regulation of host-parasite interactions will help in designing new preventive and therapeutic strategies for parasitic diseases.
Collapse
Affiliation(s)
- Priscilla Carvalho Cabral
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Laboratory of Infectious Diseases and Immunity, Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Laboratory of Infectious Diseases and Immunity, Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Luck M, Velázquez Escobar F, Glass K, Sabotke MI, Hagedorn R, Corellou F, Siebert F, Hildebrandt P, Hegemann P. Photoreactions of the Histidine Kinase Rhodopsin Ot-HKR from the Marine Picoalga Ostreococcus tauri. Biochemistry 2019; 58:1878-1891. [PMID: 30768260 DOI: 10.1021/acs.biochem.8b01200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The tiny picoalga, Ostreococcus tauri, originating from the Thau Lagoon is a member of the marine phytoplankton. Because of its highly reduced genome and small cell size, while retaining the fundamental requirements of a eukaryotic photosynthetic cell, it became a popular model organism for studying photosynthesis or circadian clock-related processes. We analyzed the spectroscopic properties of the photoreceptor domain of the histidine kinase rhodopsin Ot-HKR that is suggested to be involved in the light-induced entrainment of the Ostreococcus circadian clock. We found that the rhodopsin, Ot-Rh, dark state absorbs maximally at 505 nm. Exposure to green-orange light led to the accumulation of a blue-shifted M-state-like absorbance form with a deprotonated Schiff base. This Ot-Rh P400 state had an unusually long lifetime of several minutes. A second long-living photoproduct with a red-shifted absorbance, P560, accumulated upon illumination with blue/UVA light. The resulting photochromicity of the rhodopsin is expected to be advantageous to its function as a molecular control element of the signal transducing HKR domains. The light intensity and the ratio of blue vs green light are reflected by the ratio of rhodopsin molecules in the long-living absorbance forms. Furthermore, dark-state absorbance and the photocycle kinetics vary with the salt content of the environment substantially. This observation is attributed to anion binding in the dark state and a transient anion release during the photocycle, indicating that the salinity affects the photoinduced processes.
Collapse
Affiliation(s)
- Meike Luck
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | | | - Kathrin Glass
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Mareike-Isabel Sabotke
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Rolf Hagedorn
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Florence Corellou
- Laboratoire d'Oceanographie Microbienne , Université Pierre et Marie Curie (Paris 6), Centre National de la Recherche Scientifique, Unité Mixte de Recherche , 7621 , Observatoire Oceanologique, Banyuls/mer , France
| | - Friedrich Siebert
- Institute of Chemistry, Technische Universität Berlin , Berlin 10623 , Germany.,Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik , Albert-Ludwigs-Universität Freiburg , Freiburg 79104 , Germany
| | - Peter Hildebrandt
- Institute of Chemistry, Technische Universität Berlin , Berlin 10623 , Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| |
Collapse
|
12
|
Mukherjee S, Hegemann P, Broser M. Enzymerhodopsins: novel photoregulated catalysts for optogenetics. Curr Opin Struct Biol 2019; 57:118-126. [PMID: 30954887 DOI: 10.1016/j.sbi.2019.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Enzymerhodopsins are a recently discovered class of natural rhodopsin-based photoreceptors with light-regulated enzyme activity. Currently, three different types of these fusion proteins with an N-terminal type-1 rhodopsin and a C-terminal enzyme domain have been identified, but their physiological relevance is mostly unknown. Among these, histidine kinase rhodopsins (HKR) are photo-regulated two-component-like signaling systems that trigger a phosphorylation cascade, whereas rhodopsin phosphodiesterase (RhoPDE) or rhodopsin guanylyl cyclase (RhGC) show either light-activated hydrolysis or production of cyclic nucleotides. RhGC, the best characterized enzymerhodopsin, is involved in the phototaxis of fungal zoospores and allows for optically controlled production of cyclic nucleotides in different cell-types. These photoreceptors have great optogenetic potential and possess several advantages over the hitherto existing tools to manipulate cyclic-nucleotide dynamics in living cells.
Collapse
Affiliation(s)
- Shatanik Mukherjee
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany.
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany
| | - Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany.
| |
Collapse
|
13
|
Kapuy O, Vinod PK, Bánhegyi G, Novák B. Systems-level feedback regulation of cell cycle transitions in Ostreococcus tauri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:39-46. [PMID: 29499434 DOI: 10.1016/j.plaphy.2018.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Ostreococcus tauri is the smallest free-living unicellular organism with one copy of each core cell cycle genes in its genome. There is a growing interest in this green algae due to its evolutionary origin. Since O. tauri is diverged early in the green lineage, relatively close to the ancestral eukaryotic cell, it might hold a key phylogenetic position in the eukaryotic tree of life. In this study, we focus on the regulatory network of its cell division cycle. We propose a mathematical modelling framework to integrate the existing knowledge of cell cycle network of O. tauri. We observe that feedback loop regulation of both G1/S and G2/M transitions in O. tauri is conserved, which can make the transition bistable. This is essential to make the transition irreversible as shown in other eukaryotic organisms. By performing sequence analysis, we also predict the presence of the Greatwall/PP2A pathway in the cell cycle of O. tauri. Since O. tauri cell cycle machinery is conserved, the exploration of the dynamical characteristic of the cell division cycle will help in further understanding the regulation of cell cycle in higher eukaryotes.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Semmelweis University, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Budapest, Hungary.
| | - P K Vinod
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Gábor Bánhegyi
- Semmelweis University, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Budapest, Hungary
| | - Béla Novák
- University of Oxford, Oxford Centre for Integrative Systems Biology, Oxford, United Kingdom
| |
Collapse
|
14
|
Woller A, Duez H, Staels B, Lefranc M. A Mathematical Model of the Liver Circadian Clock Linking Feeding and Fasting Cycles to Clock Function. Cell Rep 2017; 17:1087-1097. [PMID: 27760313 DOI: 10.1016/j.celrep.2016.09.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/05/2016] [Accepted: 09/18/2016] [Indexed: 12/26/2022] Open
Abstract
To maintain energy homeostasis despite variable energy supply and consumption along the diurnal cycle, the liver relies on a circadian clock synchronized to food timing. Perturbed feeding and fasting cycles have been associated with clock disruption and metabolic diseases; however, the mechanisms are unclear. To address this question, we have constructed a mathematical model of the mammalian circadian clock, incorporating the metabolic sensors SIRT1 and AMPK. The clock response to various temporal patterns of AMPK activation was simulated numerically, mimicking the effects of a normal diet, fasting, and a high-fat diet. The model reproduces the dampened clock gene expression and NAD+ rhythms reported for mice on a high-fat diet and predicts that this effect may be pharmacologically rescued by timed REV-ERB agonist administration. Our model thus identifies altered AMPK signaling as a mechanism leading to clock disruption and its associated metabolic effects and suggests a pharmacological approach to resetting the clock in obesity.
Collapse
Affiliation(s)
- Aurore Woller
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France; University of Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, 59000 Lille, France
| | - Hélène Duez
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Bart Staels
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France.
| | - Marc Lefranc
- University of Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, 59000 Lille, France.
| |
Collapse
|
15
|
Weynberg KD, Allen MJ, Wilson WH. Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review. Viruses 2017; 9:E43. [PMID: 28294997 PMCID: PMC5371798 DOI: 10.3390/v9030043] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Viruses play a crucial role in the marine environment, promoting nutrient recycling and biogeochemical cycling and driving evolutionary processes. Tiny marine phytoplankton called prasinophytes are ubiquitous and significant contributors to global primary production and biomass. A number of viruses (known as prasinoviruses) that infect these important primary producers have been isolated and characterised over the past decade. Here we review the current body of knowledge about prasinoviruses and their interactions with their algal hosts. Several genes, including those encoding for glycosyltransferases, methyltransferases and amino acid synthesis enzymes, which have never been identified in viruses of eukaryotes previously, have been detected in prasinovirus genomes. The host organisms are also intriguing; most recently, an immunity chromosome used by a prasinophyte in response to viral infection was discovered. In light of such recent, novel discoveries, we discuss why the cellular simplicity of prasinophytes makes for appealing model host organism-virus systems to facilitate focused and detailed investigations into the dynamics of marine viruses and their intimate associations with host species. We encourage the adoption of the prasinophyte Ostreococcus and its associated viruses as a model host-virus system for examination of cellular and molecular processes in the marine environment.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | - William H Wilson
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
16
|
Derbidge R, Baumgartner S, Heusser P. Mistletoe Berry Outline Mapping with a Path Curve Function and Recording the Circadian Rhythm of Their Phenotypic Shape Change. FRONTIERS IN PLANT SCIENCE 2016; 7:1749. [PMID: 27933073 PMCID: PMC5122707 DOI: 10.3389/fpls.2016.01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
This paper presents a discovery: the change of the outline shape of mistletoe (Viscum album ssp. album) berries in vivo and in situ during ripening. It was found that a plant organ that is usually considered to merely increase in size actually changes shape in a specific rhythmic fashion. We introduce a new approach to chronobiological research on a macro-phenotypic scale to trace changes over long periods of time (with a resolution from hours to months) by using a dynamic form-determining parameter called Lambda (λ). λ is known in projective geometry as a measure for pertinent features of the outline shapes of egg-like forms, so called path curves. Ascertained circadian changes of form were analyzed for their correlation with environmental factors such as light, temperature, and other weather influences. Certain weather conditions such as sky cover, i.e., sunshine minutes per hour, have an impact on the amplitude of the daily change in form. The present paper suggests a possible supplement to established methods in chronobiology, as in this case the dynamic of form-change becomes a measurable feature, displaying a convincing accordance between mathematical rule and plant shape.
Collapse
Affiliation(s)
- Renatus Derbidge
- Institute of Integrative Medicine, University of Witten/HerdeckeWitten, Germany
- Research Institute at the Goetheanum, Science SectionDornach, Switzerland
| | - Stephan Baumgartner
- Institute of Integrative Medicine, University of Witten/HerdeckeWitten, Germany
- Hiscia Institute, Society for Cancer ResearchArlesheim, Switzerland
| | - Peter Heusser
- Institute of Integrative Medicine, University of Witten/HerdeckeWitten, Germany
| |
Collapse
|
17
|
Tokuda IT, Ono D, Ananthasubramaniam B, Honma S, Honma KI, Herzel H. Coupling Controls the Synchrony of Clock Cells in Development and Knockouts. Biophys J 2016; 109:2159-70. [PMID: 26588574 DOI: 10.1016/j.bpj.2015.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/12/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022] Open
Abstract
In mammals, a network of coupled neurons within the hypothalamus coordinates physiological rhythms with daily changes in the environment. In each neuron, delayed negative transcriptional feedbacks generate oscillations, albeit noisy and unreliable ones. Coupling mediated by diffusible neuropeptides lends precision and robustness to circadian rhythms. The double knockout of Cryptochrome Cry turns adult mice arrhythmic. But, remarkably, double knockout neonates continue to show robust oscillation much like wild-type neonates and appear to lose rhythmicity with development. We study quantitatively dispersed neurons and brain slices from wild-type and Cry double knockout mice to understand the links between single cell rhythmicity and intercellular coupling. We quantify oscillator properties of dispersed cells using nonlinear regression and study bifurcations diagrams of network models. We find that varying just three parameters-oscillator strength, strength of coupling, and timing of coupling-can reproduce experimentally observed features. In particular, modeling reveals that minor changes in timing of coupling can destroy synchronization as observed in adult slices from knockout mice.
Collapse
Affiliation(s)
- Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Shiga, Japan.
| | - Daisuke Ono
- Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken-Ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
18
|
Kingsbury NJ, Taylor SR, Henson MA. Inhibitory and excitatory networks balance cell coupling in the suprachiasmatic nucleus: A modeling approach. J Theor Biol 2016; 397:135-44. [PMID: 26972478 DOI: 10.1016/j.jtbi.2016.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/07/2016] [Accepted: 02/01/2016] [Indexed: 01/13/2023]
Abstract
Neuronal coupling contributes to circadian rhythms formation in the suprachiasmatic nucleus (SCN). While the neurotransmitter vasoactive intestinal polypeptide (VIP) is considered essential for synchronizing the oscillations of individual neurons, γ-aminobutyric acid (GABA) does not have a clear functional role despite being highly concentrated in the SCN. While most studies have examined the role of either GABA or VIP, our mathematical modeling approach explored their interplay on networks of SCN neurons. Tuning the parameters that control the release of GABA and VIP enabled us to optimize network synchrony, which was achieved at a peak firing rate during the subjective day of about 7Hz. Furthermore, VIP and GABA modulation could adjust network rhythm amplitude and period without sacrificing synchrony. We also performed simulations of SCN networks to phase shifts during 12h:12h light-dark cycles and showed that GABA networks reduced the average time for the SCN model to re-synchronize. We hypothesized that VIP and GABA balance cell coupling in the SCN to promote synchronization of heterogeneous oscillators while allowing flexibility for adjustment to environmental changes.
Collapse
Affiliation(s)
- Nathaniel J Kingsbury
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01007, United States
| | - Stephanie R Taylor
- Department of Computer Science, Colby College, Waterville, ME 04901, United States
| | - Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01007, United States.
| |
Collapse
|
19
|
Thommen Q, Pfeuty B, Schatt P, Bijoux A, Bouget FY, Lefranc M. Probing entrainment of Ostreococcus tauri circadian clock by green and blue light through a mathematical modeling approach. Front Genet 2015; 6:65. [PMID: 25774167 PMCID: PMC4343026 DOI: 10.3389/fgene.2015.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
Most organisms anticipate daily environmental variations and orchestrate cellular functions thanks to a circadian clock which entrains robustly to the day/night cycle, despite fluctuations in light intensity due to weather or seasonal variations. Marine organisms are also subjected to fluctuations in light spectral composition as their depth varies, due to differential absorption of different wavelengths by sea water. Studying how light input pathways contribute to circadian clock robustness is therefore important. Ostreococcus tauri, a unicellular picoplanktonic marine green alga with low genomic complexity and simple cellular organization, has become a promising model organism for systems biology. Functional and modeling approaches have shown that a core circadian oscillator based on orthologs of Arabidopsis TOC1 and CCA1 clock genes accounts for most experimental data acquired under a wide range of conditions. Some evidence points at putative light input pathway(s) consisting of a two-component signaling system (TCS) controlled by the only two histidine kinases (HK) of O. tauri. LOV-HK is a blue light photoreceptor under circadian control, that is required for circadian clock function. An involvement of Rhodopsin-HK (Rhod-HK) is also conceivable since rhodopsin photoreceptors mediate blue to green light input in animal circadian clocks. Here, we probe the role of LOV-HK and Rhod-HK in mediating light input to the TOC1-CCA1 oscillator using a mathematical model incorporating the TCS hypothesis. This model agrees with clock gene expression time series representative of multiple environmental conditions in blue or green light, characterizing entrainment by light/dark cycles, free-running in constant light, and resetting. Experimental and theoretical results indicate that both blue and green light can reset O. tauri circadian clock. Moreover, our mathematical analysis suggests that Rhod-HK is a blue-green light receptor and drives the clock together with LOV-HK.
Collapse
Affiliation(s)
- Quentin Thommen
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| | - Benjamin Pfeuty
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| | - Philippe Schatt
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - Amandine Bijoux
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - François-Yves Bouget
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - Marc Lefranc
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| |
Collapse
|
20
|
Velocity response curves demonstrate the complexity of modeling entrainable clocks. J Theor Biol 2014; 363:307-17. [PMID: 25193284 DOI: 10.1016/j.jtbi.2014.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022]
Abstract
Circadian clocks are biological oscillators that regulate daily behaviors in organisms across the kingdoms of life. Their rhythms are generated by complex systems, generally involving interlocked regulatory feedback loops. These rhythms are entrained by the daily light/dark cycle, ensuring that the internal clock time is coordinated with the environment. Mathematical models play an important role in understanding how the components work together to function as a clock which can be entrained by light. For a clock to entrain, it must be possible for it to be sped up or slowed down at appropriate times. To understand how biophysical processes affect the speed of the clock, one can compute velocity response curves (VRCs). Here, in a case study involving the fruit fly clock, we demonstrate that VRC analysis provides insight into a clock׳s response to light. We also show that biochemical mechanisms and parameters together determine a model׳s ability to respond realistically to light. The implication is that, if one is developing a model and its current form has an unrealistic response to light, then one must reexamine one׳s model structure, because searching for better parameter values is unlikely to lead to a realistic response to light.
Collapse
|
21
|
Lozano JC, Schatt P, Botebol H, Vergé V, Lesuisse E, Blain S, Carré IA, Bouget FY. Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1073-83. [PMID: 24698018 DOI: 10.1111/tpj.12530] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 02/14/2014] [Accepted: 03/31/2014] [Indexed: 05/03/2023]
Abstract
With fewer than 8000 genes and a minimalist cellular organization, the green picoalga Ostreococcus tauri is one of the simplest photosynthetic eukaryotes. Ostreococcus tauri contains many plant-specific genes but exhibits a very low gene redundancy. The haploid genome is extremely dense with few repeated sequences and rare transposons. Thanks to the implementation of genetic transformation and vectors for inducible overexpression/knockdown this picoeukaryotic alga has emerged in recent years as a model organism for functional genomics analyses and systems biology. Here we report the development of an efficient gene targeting technique which we use to knock out the nitrate reductase and ferritin genes and to knock in a luciferase reporter in frame to the ferritin native protein. Furthermore, we show that the frequency of insertion by homologous recombination is greatly enhanced when the transgene is designed to replace an existing genomic insertion. We propose that a natural mechanism based on homologous recombination may operate to remove inserted DNA sequences from the genome.
Collapse
Affiliation(s)
- Jean-Claude Lozano
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls/mer, France; CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls/mer, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bouget FY, Lefranc M, Thommen Q, Pfeuty B, Lozano JC, Schatt P, Botebol H, Vergé V. Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus. Mar Genomics 2014; 14:17-22. [DOI: 10.1016/j.margen.2014.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/06/2014] [Accepted: 01/23/2014] [Indexed: 12/20/2022]
|