1
|
Huang Q, Niu Y, Song L, Huang J, Wang C, Ma T. Does LIN28B gene dysregulation make women more likely to abort? REPRODUCTION AND FERTILITY 2022; 2:211-220. [PMID: 35118391 PMCID: PMC8801024 DOI: 10.1530/raf-21-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
Background LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. This study aims to verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA (unexplained recurrent spontaneous abortion) and artificial termination of pregnancy (negative control, NC). Methods The LIN28B gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function. Results The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions LIN28B can inhibit cell invasion and migration in vitro and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study. Lay summary Propagation of offspring is of great significance to the continuation of the human race. However, continuous pregnancy is more difficult for some women, especially women who have multiple miscarriages. One important contributor is the cessation of development caused by genetic factors of the embryo, but there are still many unknown reasons. We investigated the LIN28B gene which is a possible pathogenic factor in the placenta. We collected 25 cases of abortion in the experimental group (unexplained recurrent abortion group) and 25 in the control group (artificial termination of pregnancy group): on average at 7–8 weeks of pregnancy. We tested the function of lin28b in these samples and verified its function in cell lines. LIN28B plays an important role in maintaining early pregnancy by promoting the invasion of villous cells, inhibiting apoptosis and fusion, and the reduction of LIN28B expression may lead to the occurrence of early miscarriage.
Collapse
Affiliation(s)
- QiaoYao Huang
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - YanRu Niu
- Laboratory of Minimally Invasive Orthopaedics. Guangdong Medical University, Zhanjiang, Guangdong, China
| | - LiJun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - JinZhi Huang
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chenxi Wang
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - TianZhong Ma
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Chen D, Yan Y, Wang X, Li S, Liu Y, Yu D, He Y, Deng R, Liu Y, Xu M, Luo J, Gao H, Wang S. Chronic alcohol exposure promotes HCC stemness and metastasis through β-catenin/miR-22-3p/TET2 axis. Aging (Albany NY) 2021; 13:14433-14455. [PMID: 34019487 PMCID: PMC8202861 DOI: 10.18632/aging.203059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/13/2021] [Indexed: 04/16/2023]
Abstract
Hepatocellular Carcinoma (HCC) patients usually have a high rate of relapse and metastasis. Alcohol, a risk factor for HCC, promotes the aggressiveness of HCC. However, the basic mechanism is still unclear. We used HCC cells and an orthotopic liver tumor model of HCC-LM3 cells for BALB/C nude mice to study the mechanism of alcohol-induced HCC progression. We showed that chronic alcohol exposure promoted HCC cells metastasis and pulmonary nodules formation. First, we identified miR-22-3p as an oncogene in HCC, which promoted HCC cells stemness, tumor growth, and metastasis. Further, we found that miR-22-3p directly targeted TET2 in HCC. TET2, a dioxygenase involved in cytosine demethylation, has pleiotropic roles in hematopoietic stem cells self-renewal. In clinic HCC specimen, TET2 expression was not only decreased by alcohol consumption, but also inversely correlated with miR-22-3p levels. Then, we demonstrated that TET2 depletion promoted HCC cells stemness, tumor growth and metastasis. Furthermore, we identified that β-catenin was an upstream activator of miR-22-3p. In conclusion, this study suggests that chronic alcohol exposure promotes HCC progression and β-catenin/miR-22-3p/TET2 regulatory axis plays an important role in alcohol-promoted HCC malignancy.
Collapse
Affiliation(s)
- Danlei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yan Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xinyi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Pulmonary Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Fengtai, Beijing 100071, China
| | - Suzhi Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Dandan Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yongjing He
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ruiqing Deng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yakun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hongjun Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Pulmonary Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Fengtai, Beijing 100071, China
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| |
Collapse
|
3
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
4
|
Zolghadr F, Tse N, Loka D, Joun G, Meppat S, Wan V, Zoellner H, Xaymardan M, Farah CS, Lyons JG, Hau E, Patrick E, Seyedasli N. A Wnt-mediated phenotype switch along the epithelial-mesenchymal axis defines resistance and invasion downstream of ionising radiation in oral squamous cell carcinoma. Br J Cancer 2021; 124:1921-1933. [PMID: 33785878 DOI: 10.1038/s41416-021-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dynamic transitions of tumour cells along the epithelial-mesenchymal axis are important in tumorigenesis, metastasis and therapy resistance. METHODS In this study, we have used cell lines, 3D spheroids and tumour samples in a variety of cell biological and transcriptome analyses to highlight the cellular and molecular dynamics of OSCC response to ionising radiation. RESULTS Our study demonstrates a prominent hybrid epithelial-mesenchymal state in oral squamous cell carcinoma cells and tumour samples. We have further identified a key role for levels of E-cadherin in stratifying the hybrid cells to compartments with varying levels of radiation response and radiation-induced epithelial-mesenchymal transition. The response to radiation further entailed the generation of a new cell population with low expression levels of E-cadherin, and positive for Vimentin (ECADLow/Neg-VIMPos), a phenotypic signature that showed an enhanced capacity for radiation resistance and invasion. At the molecular level, transcriptome analysis of spheroids in response to radiation showed an initial burst of misregulation within the first 30 min that further declined, although still highlighting key alterations in gene signatures. Among others, pathway analysis showed an over-representation for the Wnt signalling pathway that was further confirmed to be functionally involved in the generation of ECADLow/Neg-VIMPos population, acting upstream of radiation resistance and tumour cell invasion. CONCLUSION This study highlights the functional significance and complexity of tumour cell remodelling in response to ionising radiation with links to resistance and invasive capacity. An area of less focus in conventional radiotherapy, with the potential to improve treatment outcomes and relapse-free survival.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Nigel Tse
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Dikasya Loka
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - George Joun
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Sreelakshmi Meppat
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Victor Wan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Hans Zoellner
- Discipline of Oral Surgery, Medicine and Diagnostics, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Munira Xaymardan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA, Australia.,Maxillofacial, Oral and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - J Guy Lyons
- Discipline of Dermatology, Sydney Medical School and Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Hau
- Sydney West Radiation Oncology Network, Westmead, NSW, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Ellis Patrick
- The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Naisana Seyedasli
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
| |
Collapse
|
5
|
Pei D, Shu X, Gassama-Diagne A, Thiery JP. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 2019; 21:44-53. [DOI: 10.1038/s41556-018-0195-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
6
|
Hou J, Long H, Zhou C, Zheng S, Wu H, Guo T, Wu Q, Zhong T, Wang T. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem Cell Res Ther 2017; 8:4. [PMID: 28095922 PMCID: PMC5242041 DOI: 10.1186/s13287-016-0454-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/11/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have limited potential of cardiogenic differentiation. In this study, we investigated the influence of long noncoding RNA Braveheart (lncRNA-Bvht) on cardiogenic differentiation of MSCs in vitro. Methods MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells were divided into three groups: blank control, null vector control, and lncRNA-Bvht. All three groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 h, and 24 h of reoxygenation (20% O2). Cardiogenic differentiation was induced using 5-AZA for another 24 h. Normoxia (20% O2) was applied as a negative control during the whole process. Cardiogenic differentiation was assessed, and expressions of cardiac-specific transcription factors and epithelial-mesenchymal transition (EMT)-associated biomarkers were detected. Anti-mesoderm posterior1 (Mesp1) siRNA was transfected in order to block its expression, and relevant downstream molecules were examined. Results Compared with the blank control and null vector control groups, the lncRNA-Bvht group presented a higher percentage of differentiated cells of the cardiogenic phenotype in vitro both under the normal condition and after hypoxia/re-oxygenation. There was an increased level of cTnT and α-SA, and cardiac-specific transcription factors including Nkx2.5, Gata4, Gata6, and Isl-1 were significantly upregulated (P < 0.01). Expressions of EMT-associated genes including Snail, Twist and N-cadherin were much higher (P < 0.01). Mesp1 exhibited a distinct augmentation following lncRNA-Bvht transfection. Expressions of relevant cardiac-specific transcription factors and EMT-associated genes all presented a converse alteration in the condition of Mesp1 inhibition prior to lncRNA-Bvht transfection. Conclusion lncRNA-Bvht could efficiently promote MSCs transdifferentation into cells with the cardiogenic phenotype in vitro. It might function via enhancing the expressions of cardiac-specific transcription factors and EMT-associated genes. Mesp1 could be a pivotal intermediary in the procedure.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
7
|
Zhang D, Yang G, Li X, Xu C, Ge H. Inhibition of Liver Carcinoma Cell Invasion and Metastasis by Knockdown of Cullin7 In Vitro and In Vivo. Oncol Res 2016; 23:171-81. [PMID: 27053346 PMCID: PMC7838605 DOI: 10.3727/096504016x14519995067562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cullin7 is an E3 ubiquitin ligase. The Cullin7 protein family functions as a molecular scaffold to coordinate substrate ubiquitination in Skp, Cullin, and F-box-containing complex (SCF complex). Cullin7s control normal development and primary cellular processes and are characterized by a unique genomic network organization. Less is known about the involvement of Cullin7 with hepatocellular carcinoma (HCC). In this study, we found that Cullin7 showed a high expression in HCC tumor tissues, especially in metastatic HCC tumor tissues. Also, there was a negative correlation between Cullin7 expression and long survival. Silencing of Cullin7 in liver cancer cells can significantly reduce the migration, invasion, and metastatic abilities. Also, detection of epithelial–mesenchymal transition (EMT) marker expression showed that Cullin7 promotes epithelial–mesenchymal transformation of cancer cells. The results of this study helped to elucidate the oncogene functions of Cullin7 in liver cancers.
Collapse
Affiliation(s)
- Donghui Zhang
- Second Ward of Infectious Disease Department, Linyi People's Hospital, Linyi, Shandong, China
| | | | | | | | | |
Collapse
|
8
|
Verneuil L, Leboeuf C, Bousquet G, Brugiere C, Elbouchtaoui M, Plassa LF, Peraldi MN, Lebbé C, Ratajczak P, Janin A. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients. Oncotarget 2016; 6:41497-507. [PMID: 26594799 PMCID: PMC4747169 DOI: 10.18632/oncotarget.6359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022] Open
Abstract
Background Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion. Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. Methods In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells. For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug. The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. Results We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin. The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance. Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker. Conclusion We identified here donor-derived stem cells within skin SCC in kidney-transplant recipients. They were located in invasive areas of SCC and had EMT characteristics.
Collapse
Affiliation(s)
- Laurence Verneuil
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, CHU Caen, Caen, F-14033, France.,Université de Caen Normandie, Medical School, Caen, F-14000, France
| | - Christophe Leboeuf
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Guilhem Bousquet
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Charlotte Brugiere
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, CHU Caen, Caen, F-14033, France.,Université de Caen Normandie, Medical School, Caen, F-14000, France
| | - Morad Elbouchtaoui
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Pathology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | | | - Marie-Noelle Peraldi
- Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | - Celeste Lebbé
- Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | - Philippe Ratajczak
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Anne Janin
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Pathology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| |
Collapse
|
9
|
Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016; 143:1242-58. [PMID: 27095490 DOI: 10.1242/dev.111591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elvira Forte
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington 2052, Australia
| | - Jason C Kovacic
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Lazzarini R, Sorgentoni G, Caffarini M, Sayeed MA, Olivieri F, Di Primio R, Orciani M. New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid. Int J Immunopathol Pharmacol 2015; 29:523-8. [PMID: 26684628 DOI: 10.1177/0394632015610228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), isolated from different adult sources, have great appeal for therapeutic applications due to their simple isolation, extensive expansion potential, and high differentiative potential.In our previous studies we isolated MSCs form amniotic fluid (AF-MSCs) and skin (S-MSCs) and characterized them according to their phenotype, pluripotency, and mRNA/microRNAs (miRNAs) profiling using Card A from Life Technologies.Here, we enlarge the profiling of AF-MCSs and S-MSCs to the more recently discovered miRNAs (Card B by Life Technologies) to identify the miRNAs putative target genes and the relative signaling pathways. Card B, in fact, contains miRNAs whose role and target are not yet elucidated.The expression of the analyzed miRNAs is changing between S-MSCs and AF-MSCs, indicating that these two types of MSCs show differences potentially related to their source. Interestingly, the pathways targeted by the miRNAS deriving from Card B are the same found during the analysis of miRNAs from Card A.This result confirms the key role played by WNT and TGF-β pathways in stem cell fate, underlining as other miRNAs partially ignored up to now deserve to be reconsidered. In addition, this analysis allows including Adherens junction pathways among the mechanisms finely regulated in stem cell behavior.
Collapse
Affiliation(s)
- R Lazzarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - G Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Caffarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M A Sayeed
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - F Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - R Di Primio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Orciani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
11
|
Chong JJ, Forte E, Harvey RP. Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. Stem Cell Res 2014; 13:592-614. [DOI: 10.1016/j.scr.2014.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/30/2022] Open
|
12
|
Epicardial Origin of Resident Mesenchymal Stem Cells in the Adult Mammalian Heart. J Dev Biol 2014. [DOI: 10.3390/jdb2020117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
13
|
Ramakrishna R, Rostomily R. Seed, soil, and beyond: The basic biology of brain metastasis. Surg Neurol Int 2013; 4:S256-64. [PMID: 23717797 PMCID: PMC3656561 DOI: 10.4103/2152-7806.111303] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/07/2013] [Indexed: 01/21/2023] Open
Abstract
First invoked by Paget, the seed and soil hypothesis suggests that the successful growth of metastatic cells depends on the interactions and properties of cancer cells (seeds) and their potential target organs (soil). In the context of the seed and soil hypothesis this review examines recent advances in the understanding of molecular and cellular features that permit transformed epithelial cells to gain access to the blood stream (intravasation), survive their journey through the blood stream, and ultimately traverse through the microvasculature of target organs (extravsation) to deposit, survive, and grow in a foreign tissue environment. In addition to a review of the clinical and experimental evidence supporting the seed and soil theory to cancer metastasis, additional concepts highlighted include: (i) The role of cancer stem-like cells as putative cells of metastatic origin (the "seeds"); (ii) the mechanism of epithelial to mesenchymal transition (EMT) in driving epithelial cell conthose molecules do no blood stream to avoid anoikis, or anchorage independent cell death; and (iv) the reverse process of EMT, or mesenchymal to epithelial transition (MET), which promotes conversion back to the parent cell morphology and growth of macrometastsis in the target organ. The unique biology of metastases once established in the brain, and in particular the "sanctuary" role that the brain microenvironment plays in promoting metastatic growth and treatment resistance, will also be examined. These issues are of more than academic interest since as systemic therapies gradually improve local tumor control, the relative impact of brain metastasis will inexorably play a proportionally greater role in determining patient morbidity and mortality.
Collapse
Affiliation(s)
- Rohan Ramakrishna
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|