1
|
Kinetochore-microtubule coupling mechanisms mediated by the Ska1 complex and Cdt1. Essays Biochem 2020; 64:337-347. [PMID: 32844209 DOI: 10.1042/ebc20190075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
The faithful segregation of duplicated sister chromatids rely on the remarkable ability of kinetochores to sustain stable load bearing attachments with the dynamic plus ends of kinetochore-microtubules (kMTs). The outer layer of the kinetochore recruits several motor and non-motor microtubule-associated proteins (MAPs) that help the kinetochores establish and maintain a load bearing dynamic attachment with kMTs. The primary kMT-binding protein, the Ndc80 complex (Ndc80c), which is highly conserved among diverse organisms from yeast to humans, performs this essential function with assistance from other MAPs. These MAPs are not an integral part of the kinetochore, but they localize to the kinetochore periodically throughout mitosis and regulate the strength of the kinetochore microtubule attachments. Here, we attempt to summarize the recent advances that have been made toward furthering our understanding of this co-operation between the Ndc80c and these MAPs, focusing on the spindle and kinetochore-associated 1 (Ska1) complex (Ska1c) and Cdc10-dependent transcript 1 (Cdt1) in humans.
Collapse
|
2
|
Chen F, Zhang K, Huang Y, Luo F, Hu K, Cai Q. SPC25 may promote proliferation and metastasis of hepatocellular carcinoma via p53. FEBS Open Bio 2020; 10:1261-1275. [PMID: 32351050 PMCID: PMC7327911 DOI: 10.1002/2211-5463.12872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with poor prognosis and high mortality. To identify key genes associated with HCC and the underlying mechanisms, we performed weighted correlation network analysis (WGCNA) of potential key genes of HCC. We identified 17 key genes closely related to HCC by yellow module combined with PPI analysis. Verification of the role of these genes revealed that SPC25 knockdown results in a significant decrease in proliferation and metastasis of HCC cells and increased protein levels of components of the p53 pathway in vitro. In summary, we identified that SPC25 is a potential tumor‐promoting factor in HCC and may act via the p53 pathway.
Collapse
Affiliation(s)
- Fengjuan Chen
- Department of Hepatology, The Third People's Hospital of Shenzhen, Shenzhen, China.,Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun yat-sen University, Guangzhou, China
| | - Yilin Huang
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Fang Luo
- Department of Hepatology, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingxian Cai
- Department of Hepatology, The Third People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Amin MA, Agarwal S, Varma D. Mapping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase. Cytoskeleton (Hoboken) 2019; 76:398-412. [PMID: 31454167 DOI: 10.1002/cm.21559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
In mitosis, faithful chromosome segregation is orchestrated by the dynamic interactions between the spindle microtubules (MTs) emanating from the opposite poles and the kinetochores of the chromosomes. However, the precise mechanism that coordinates the coupling of the kinetochore components to dynamic MTs has been a long-standing question. Microtubule-associated proteins (MAPs) regulate MT nucleation and dynamics, MT-mediated transport and MT cross-linking in cells. During mitosis, MAPs play an essential role not only in determining spindle length, position, and orientation but also in facilitating robust kinetochore-microtubule (kMT) attachments by linking the kinetochores to spindle MTs efficiently. The stability of MTs imparted by the MAPs is critical to ensure accurate chromosome segregation. This review primarily focuses on the specific function of nonmotor kinetochore MAPs, their recruitment to kinetochores and their MT-binding properties. We also attempt to synthesize and strengthen our understanding of how these MAPs work in coordination with the kinetochore-bound Ndc80 complex (the key component at the MT-binding interface in metaphase and anaphase) to establish stable kMT attachments and control accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mohammed A Amin
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
4
|
Zhang Q, Chen Y, Yang L, Liu H. Multitasking Ska in Chromosome Segregation: Its Distinct Pools Might Specify Various Functions. Bioessays 2018; 40. [PMID: 29359816 DOI: 10.1002/bies.201700176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Indexed: 01/31/2023]
Abstract
The human spindle and kinetochore associated (Ska) complex is required for proper mitotic progression. Extensive studies have demonstrated its important functions in both stable kinetochore-microtubule interactions and spindle checkpoint silencing. We suggest a model to explain how various Ska functions might be fulfilled by distinct pools of Ska at kinetochores. The Ndc80-loop pool of Ska is recruited by the Ndc80 loop, or together with some of its flanking sequences, and the recruitment is also dependent on Cdk1-mediated Ska3 phosphorylation. This pool seems to play a more important role in silencing the spindle checkpoint than stabilizing kinetochore-microtubule interactions. In contrast, the Ndc80-N-terminus pool of Ska is recruited by the N-terminal domains of Ndc80 and appears to be more important for stabilizing kinetochore-microtubule interactions. Here, we review and discuss the evidence that supports this model and suggest further experiments to test the functioning mechanisms of the Ska complex.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Lu Yang
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
5
|
Chmielewska AE, Tang NH, Toda T. The hairpin region of Ndc80 is important for the kinetochore recruitment of Mph1/MPS1 in fission yeast. Cell Cycle 2016; 15:740-7. [PMID: 26900649 PMCID: PMC4845937 DOI: 10.1080/15384101.2016.1148842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The establishment of proper kinetochore-microtubule attachments facilitates faithful chromosome segregation. Incorrect attachments activate the spindle assembly checkpoint (SAC), which blocks anaphase onset via recruitment of a cohort of SAC components (Mph1/MPS1, Mad1, Mad2, Mad3/BubR1, Bub1 and Bub3) to kinetochores. KNL1, a component of the outer kinetochore KMN network (KNL1/Mis12 complex/Ndc80 complex), acts as a platform for Bub1 and Bub3 localization upon its phosphorylation by Mph1/MPS1. The Ndc80 protein, a major microtubule-binding site, is critical for MPS1 localization to the kinetochores in mammalian cells. Here we characterized the newly isolated mutant ndc80-AK01 in fission yeast, which contains a single point mutation within the hairpin region. This hairpin connects the preceding calponin-homology domain with the coiled-coil region. ndc80-AK01 was hypersensitive to microtubule depolymerizing reagents with no apparent growth defects without drugs. Subsequent analyses indicated that ndc80-AK01 is defective in SAC signaling, as mutant cells proceeded into lethal cell division in the absence of microtubules. Under mitotic arrest conditions, all SAC components (Ark1/Aurora B, Mph1, Bub1, Bub3, Mad3, Mad2 and Mad1) did not localize to the kinetochore. Further genetic analyses indicated that the Ndc80 hairpin region might act as a platform for the kinetochore recruitment of Mph1, which is one of the most upstream SAC components in the hierarchy. Intriguingly, artificial tethering of Mph1 to the kinetochore fully restored checkpoint signaling in ndc80-AK01 cells, further substantiating the notion that Ndc80 is a kinetochore platform for Mph1. The hairpin region of Ndc80, therefore, plays a critical role in kinetochore recruitment of Mph1.
Collapse
Affiliation(s)
| | - Ngang Heok Tang
- a The Francis Crick Institute, Lincoln's Inn Fields , London , United Kingdom
| | - Takashi Toda
- a The Francis Crick Institute, Lincoln's Inn Fields , London , United Kingdom.,b Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
6
|
Liu B, Yao Z, Hu K, Huang H, Xu S, Wang Q, Yang Y, Ren J. ShRNA-mediated silencing of the Ndc80 gene suppress cell proliferation and affected hepatitis B virus-related hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2016; 40:297-303. [PMID: 26382282 DOI: 10.1016/j.clinre.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies in the world, and hepatitis B virus (HBV) has been well established to cause HCC. Ndc80 complex is a conserved mitotic regulator dedicated to ensuring faithful chromosome segregation and plays an important role in inducing tumor formation. However, its role in HCC caused by HBV infection remains unclear. METHODS Immunohistochemistry (IHC), Western blot (WB), and real-time qRT-PCR were used to measure the expression of Ndc80 in HBV-related HCC tissues. Ndc80-specific short hairpin RNA (shRNA) was used to knock-down Ndc80 expression in the hepatoma cell line HeG2 and HepG2.2.15, which is stable transcribed with HBV genome. Furthermore, the effect of Ndc80 on cellular proliferation and growth were examined, respectively. RESULTS The expression level of Ndc80 was remarkably up-regulated in HBV-related HCC tissues. Down-regulation of Ndc80 expression suppressed HBV replication. With cell counting and the MTS assay, cellular proliferation and growth of Ndc80 knocking-down cell line was shown to be effectively restrained. CONCLUSION This study suggests that Ndc80 may play an important role in the process of HBV-related HCC, and that it may be a potential biological treatment target in the future.
Collapse
Affiliation(s)
- Bo Liu
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Zhicheng Yao
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Kunpeng Hu
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - He Huang
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Shilei Xu
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Qinliang Wang
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Yang Yang
- Department of liver transplantation, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Jie Ren
- Department of ultrasound, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China.
| |
Collapse
|
7
|
Sedgwick GG, Larsen MSY, Lischetti T, Streicher W, Jersie-Christensen RR, Olsen JV, Nilsson J. Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint signaling. MAbs 2016; 8:689-97. [PMID: 26986935 DOI: 10.1080/19420862.2016.1160988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation during mitosis by delaying the activation of the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores. The Mad2 protein is essential for a functional checkpoint because it binds directly to Cdc20, the mitotic co-activator of the APC/C, thereby inhibiting progression into anaphase. Mad2 exists in at least 2 different conformations, open-Mad2 (O-Mad2) and closed-Mad2 (C-Mad2), with the latter representing the active form that is able to bind Cdc20. Our ability to dissect Mad2 biology in vivo is limited by the absence of monoclonal antibodies (mAbs) useful for recognizing the different conformations of Mad2. Here, we describe and extensively characterize mAbs specific for either O-Mad2 or C-Mad2, as well as a pan-Mad2 antibody, and use these to investigate the different Mad2 complexes present in mitotic cells. Our antibodies validate current Mad2 models but also suggest that O-Mad2 can associate with checkpoint complexes, most likely through dimerization with C-Mad2. Furthermore, we investigate the makeup of checkpoint complexes bound to the APC/C, which indicate the presence of both Cdc20-BubR1-Bub3 and Mad2-Cdc20-BubR1-Bub3 complexes, with Cdc20 being ubiquitinated in both. Thus, our defined mAbs provide insight into checkpoint signaling and provide useful tools for future research on Mad2 function and regulation.
Collapse
Affiliation(s)
- Garry G Sedgwick
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Marie Sofie Yoo Larsen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Tiziana Lischetti
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Werner Streicher
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Rosa Rakownikow Jersie-Christensen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jesper V Olsen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jakob Nilsson
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
8
|
Lischetti T, Nilsson J. Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol 2015; 2:e970484. [PMID: 27308407 PMCID: PMC4905242 DOI: 10.4161/23723548.2014.970484] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022]
Abstract
Equal segregation of sister chromatids during mitosis requires that pairs of kinetochores establish proper attachment to microtubules emanating from opposite poles of the mitotic spindle. The spindle assembly checkpoint (SAC) protects against errors in segregation by delaying sister separation in response to improper kinetochore–microtubule interactions, and certain checkpoint proteins help to establish proper attachments. Anaphase entry is inhibited by the checkpoint through assembly of the mitotic checkpoint complex (MCC) composed of the 2 checkpoint proteins, Mad2 and BubR1, bound to Cdc20. The outer kinetochore acts as a catalyst for MCC production through the recruitment and proper positioning of checkpoint proteins and recently there has been remarkable progress in understanding how this is achieved. Here, we highlight recent advances in our understanding of kinetochore–checkpoint protein interactions and inhibition of the anaphase promoting complex by the MCC.
Collapse
Affiliation(s)
- Tiziana Lischetti
- The Novo Nordisk Foundation Center for Protein Research; Faculty of Health and Medical Sciences, University of Copenhagen ; Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research; Faculty of Health and Medical Sciences, University of Copenhagen ; Copenhagen, Denmark
| |
Collapse
|
9
|
Tang NH, Toda T. MAPping the Ndc80 loop in cancer: A possible link between Ndc80/Hec1 overproduction and cancer formation. Bioessays 2015; 37:248-56. [PMID: 25557589 PMCID: PMC4359004 DOI: 10.1002/bies.201400175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mis-regulation (e.g. overproduction) of the human Ndc80/Hec1 outer kinetochore protein has been associated with aneuploidy and tumourigenesis, but the genetic basis and underlying mechanisms of this phenomenon remain poorly understood. Recent studies have identified the ubiquitous Ndc80 internal loop as a protein-protein interaction platform. Binding partners include the Ska complex, the replication licensing factor Cdt1, the Dam1 complex, TACC-TOG microtubule-associated proteins (MAPs) and kinesin motors. We review the field and propose that the overproduction of Ndc80 may unfavourably absorb these interactors through the internal loop domain and lead to a change in the equilibrium of MAPs and motors in the cells. This sequestration will disrupt microtubule dynamics and the proper segregation of chromosomes in mitosis, leading to aneuploid formation. Further investigation of Ndc80 internal loop-MAPs interactions will bring new insights into their roles in kinetochore-microtubule attachment and tumourigenesis.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | | |
Collapse
|
10
|
Zhang T, Zhou Y, Qi ST, Wang ZB, Qian WP, Ouyang YC, Shen W, Schatten H, Sun QY. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle 2015; 14:2701-10. [PMID: 26054848 PMCID: PMC4613995 DOI: 10.1080/15384101.2015.1058677] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/07/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022] Open
Abstract
Nuf2 plays an important role in kinetochore-microtubule attachment and thus is involved in regulation of the spindle assembly checkpoint in mitosis. In this study, we examined the localization and function of Nuf2 during mouse oocyte meiotic maturation. Myc6-Nuf2 mRNA injection and immunofluorescent staining showed that Nuf2 localized to kinetochores from germinal vesicle breakdown to metaphase I stages, while it disappeared from the kinetochores at the anaphase I stage, but relocated to kinetochores at the MII stage. Overexpression of Nuf2 caused defective spindles, misaligned chromosomes, and activated spindle assembly checkpoint, and thus inhibited chromosome segregation and metaphase-anaphase transition in oocyte meiosis. Conversely, precocious polar body extrusion was observed in the presence of misaligned chromosomes and abnormal spindle formation in Nuf2 knock-down oocytes, causing aneuploidy. Our data suggest that Nuf2 is a critical regulator of meiotic cell cycle progression in mammalian oocytes.
Collapse
Affiliation(s)
- Teng Zhang
- Institute of Reproductive Sciences; College of Animal Science and Technology; Qingdao Agricultural University; Qingdao, China
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing, China
| | - Shu-Tao Qi
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine; Peking University Shenzhen Hospital; Medical Center of Peking University; Shenzhen, Guangdong, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing, China
| | - Wei Shen
- Institute of Reproductive Sciences; College of Animal Science and Technology; Qingdao Agricultural University; Qingdao, China
| | - Heide Schatten
- Department of Veterinary Pathobiology; University of Missouri; Columbia, MO USA
| | - Qing-Yuan Sun
- Institute of Reproductive Sciences; College of Animal Science and Technology; Qingdao Agricultural University; Qingdao, China
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing, China
| |
Collapse
|
11
|
Tang NH, Toda T. Alp7/TACC recruits kinesin-8-PP1 to the Ndc80 kinetochore protein for timely mitotic progression and chromosome movement. J Cell Sci 2014; 128:354-63. [PMID: 25472718 PMCID: PMC4294777 DOI: 10.1242/jcs.160036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon establishment of proper kinetochore–microtubule attachment, the spindle assembly checkpoint (SAC) must be silenced to allow onset of anaphase, which is when sister chromatids segregate equally to two daughter cells. However, how proper kinetochore–microtubule attachment leads to timely anaphase onset remains elusive. Furthermore, the molecular mechanisms of chromosome movement during anaphase A remain unclear. In this study, we show that the fission yeast Alp7/TACC protein recruits a protein complex consisting of the kinesin-8 (Klp5–Klp6) and protein phosphatase 1 (PP1) to the kinetochore upon kinetochore–microtubule attachment. Accumulation of this complex at the kinetochore, on the one hand, facilitates SAC inactivation through PP1, and, on the other hand, accelerates polewards chromosome movement driven by the Klp5–Klp6 motor. We identified an alp7 mutant that had specific defects in binding to the Klp5–Klp6–PP1 complex but with normal localisation to the microtubule and kinetochore. Consistent with our proposition, this mutant shows delayed anaphase onset and decelerated chromosome movement during anaphase A. We propose that the recruitment of kinesin-8–PP1 to the kinetochore through Alp7/TACC interaction plays a crucial role in regulation of timely mitotic progression and chromosome movement during anaphase A.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
12
|
Sacristan C, Kops GJPL. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol 2014; 25:21-8. [PMID: 25220181 DOI: 10.1016/j.tcb.2014.08.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023]
Abstract
Error-free chromosome segregation relies on stable connections between kinetochores and spindle microtubules. The spindle assembly checkpoint (SAC) monitors such connections and relays their absence to the cell cycle machinery to delay cell division. The molecular network at kinetochores that is responsible for microtubule binding is integrated with the core components of the SAC signaling system. Molecular-mechanistic understanding of how the SAC is coupled to the kinetochore-microtubule interface has advanced significantly in recent years. The latest insights not only provide a striking view of the dynamics and regulation of SAC signaling events at the outer kinetochore but also create a framework for understanding how that signaling may be terminated when kinetochores and microtubules connect.
Collapse
Affiliation(s)
- Carlos Sacristan
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Geert J P L Kops
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
13
|
Tang NH, Takada H, Hsu KS, Toda T. The internal loop of fission yeast Ndc80 binds Alp7/TACC-Alp14/TOG and ensures proper chromosome attachment. Mol Biol Cell 2013; 24:1122-33. [PMID: 23427262 PMCID: PMC3623634 DOI: 10.1091/mbc.e12-11-0817] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 01/19/2023] Open
Abstract
The Ndc80 outer kinetochore complex plays a critical role in kinetochore-microtubule attachment, yet our understanding of the mechanism by which this complex interacts with spindle microtubules for timely and accurate chromosome segregation remains limited. Here we address this issue using an ndc80 mutant (ndc80-NH12) from fission yeast that contains a point mutation within a ubiquitous internal loop. This mutant is normal for assembly of the Ndc80 complex and bipolar spindle formation yet defective in proper end-on attachment to the spindle microtubule, with chromosome alignment defects and missegregation happening later during mitosis. We find that ndc80-NH12 exhibits impaired localization of the microtubule-associated protein complex Alp7/transforming acidic coiled coil (TACC)-Alp14/tumor-overexpressed gene (TOG) to the mitotic kinetochore. Consistently, wild-type Ndc80 binds these two proteins, whereas the Ndc80-NH12 mutant protein displays a substantial reduction of interaction. Crucially, forced targeting of Alp7-Alp14 to the outer kinetochore rescues ndc80-NH12-mutant phenotypes. The loop was previously shown to bind Dis1/TOG, by which it ensures initial chromosome capture during early mitosis. Strikingly, ndc80-NH12 is normal in Dis1 localization. Genetic results indicate that the loop recruits Dis1/TOG and Alp7/TACC-Alp14/TOG independently. Our work therefore establishes that the Ndc80 loop plays sequential roles in spindle-kinetochore attachment by connecting the Ndc80 complex to Dis1/TOG and Alp7/TACC-Alp14/TOG.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | | | | | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
14
|
Tang NH, Toda T. Ndc80 Loop as a protein-protein interaction motif. Cell Div 2013; 8:2. [PMID: 23497645 PMCID: PMC3601998 DOI: 10.1186/1747-1028-8-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the structure and function of kinetochores has advanced dramatically over the past 10 years, yet how the plus end of spindle microtubules interacts with the kinetochore and establishes amphitelic attachment for proper sister chromatid segregation remains unresolved. However, several recent reports from different organisms have shed new light on this issue. A key player in microtubule-kinetochore interaction is the conserved Ndc80 outer kinetochore complex. In both yeast and human cells in particular, a ubiquitous internal 'loop' found in the Ndc80 molecule interrupting its C-terminal coiled-coil domain plays critical roles in protein-protein interaction, by recruiting microtubule-binding proteins to ensure proper kinetochore-microtubule attachment. In this commentary, we summarise the recent progress made and discuss the evolutionary significance of this loop's role in microtubule dynamics at the kinetochore for accurate chromosome segregation.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| |
Collapse
|
15
|
Varma D, Salmon ED. The KMN protein network--chief conductors of the kinetochore orchestra. J Cell Sci 2013; 125:5927-36. [PMID: 23418356 DOI: 10.1242/jcs.093724] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Successful completion of mitosis requires that sister kinetochores become attached end-on to the plus ends of spindle microtubules (MTs) in prometaphase, thereby forming kinetochore microtubules (kMTs) that tether one sister to one spindle pole and the other sister to the opposite pole. Sites for kMT attachment provide at least four key functions: robust and dynamic kMT anchorage; force generation that can be coupled to kMT plus-end dynamics; correction of errors in kMT attachment; and control of the spindle assembly checkpoint (SAC). The SAC typically delays anaphase until chromosomes achieve metaphase alignment with each sister kinetochore acquiring a full complement of kMTs. Although it has been known for over 30 years that MT motor proteins reside at kinetochores, a highly conserved network of protein complexes, called the KMN network, has emerged in recent years as the primary interface between the kinetochore and kMTs. This Commentary will summarize recent advances in our understanding of the role of the KMN network for the key kinetochore functions, with a focus on human cells.
Collapse
Affiliation(s)
- Dileep Varma
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | | |
Collapse
|