1
|
Navarro-Quiles C, Lup SD, Muñoz-Nortes T, Candela H, Micol JL. The genetic and molecular basis of haploinsufficiency in flowering plants. TRENDS IN PLANT SCIENCE 2024; 29:72-85. [PMID: 37633803 DOI: 10.1016/j.tplants.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/28/2023]
Abstract
In diploid organisms, haploinsufficiency can be defined as the requirement for more than one fully functional copy of a gene. In contrast to most genes, whose loss-of-function alleles are recessive, loss-of-function alleles of haploinsufficient genes are dominant. However, forward and reverse genetic screens are biased toward obtaining recessive, loss-of-function mutations, and therefore, dominant mutations of all types are underrepresented in mutant collections. Despite this underrepresentation, haploinsufficient loci have intriguing implications for studies of genome evolution, gene dosage, stability of protein complexes, genetic redundancy, and gene expression. Here we review examples of haploinsufficiency in flowering plants and describe the underlying molecular mechanisms and evolutionary forces driving haploinsufficiency. Finally, we discuss the masking of haploinsufficiency by genetic redundancy, a widespread phenomenon among angiosperms.
Collapse
Affiliation(s)
- Carla Navarro-Quiles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
2
|
Billiard S, Castric V, Llaurens V. The integrative biology of genetic dominance. Biol Rev Camb Philos Soc 2021; 96:2925-2942. [PMID: 34382317 PMCID: PMC9292577 DOI: 10.1111/brv.12786] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Dominance is a basic property of inheritance systems describing the link between a diploid genotype at a single locus and the resulting phenotype. Models for the evolution of dominance have long been framed as an opposition between the irreconcilable views of Fisher in 1928 supporting the role of largely elusive dominance modifiers and Wright in 1929, who viewed dominance as an emerging property of the structure of enzymatic pathways. Recent theoretical and empirical advances however suggest that these opposing views can be reconciled, notably using models investigating the regulation of gene expression and developmental processes. In this more comprehensive framework, phenotypic dominance emerges from departures from linearity between any levels of integration in the genotype‐to‐phenotype map. Here, we review how these different models illuminate the emergence and evolution of dominance. We then detail recent empirical studies shedding new light on the diversity of molecular and physiological mechanisms underlying dominance and its evolution. By reconciling population genetics and functional biology, we hope our review will facilitate cross‐talk among research fields in the integrative study of dominance evolution.
Collapse
Affiliation(s)
- Sylvain Billiard
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité, CNRS/MNHN/Sorbonne Université/EPHE, Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005, Paris, France
| |
Collapse
|
3
|
Johnson AF, Nguyen HT, Veitia RA. Causes and effects of haploinsufficiency. Biol Rev Camb Philos Soc 2019; 94:1774-1785. [DOI: 10.1111/brv.12527] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Adam F. Johnson
- Institute of Research and DevelopmentDuy Tan University Da Nang, 550000 Vietnam
| | - Ha T. Nguyen
- Institute of Research and DevelopmentDuy Tan University Da Nang, 550000 Vietnam
| | | |
Collapse
|
4
|
Hu G, Wendel JF. Cis-trans controls and regulatory novelty accompanying allopolyploidization. THE NEW PHYTOLOGIST 2019; 221:1691-1700. [PMID: 30290011 DOI: 10.1111/nph.15515] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/30/2018] [Indexed: 05/20/2023]
Abstract
Allopolyploidy is a prevalent process in plants, having important physiological, ecological and evolutionary consequences. Transcriptomic responses to genomic merger and doubling have been demonstrated in many allopolyploid systems, encompassing a diversity of phenomena including homoeolog expression bias, genome dominance, expression-level dominance and revamping of co-expression networks. Notwithstanding the foregoing, there remains a need to develop a conceptual framework that will stimulate a deeper understanding of these diverse phenomena and their mechanistic interrelationships. Here we introduce considerations relevant to this framework with a focus on cis-trans interactions among duplicated genes and alleles in hybrids and allopolyploids. By extending classic allele-specific expression analysis to the allopolyploid level, we distinguish the distinct effects of progenitor regulatory interactions from the novel intergenomic interactions that arise from genome merger and allopolyploidization. This perspective informs experiments designed to reveal the molecular genetic basis of gene regulatory control, and will facilitate the disentangling of genetic from epigenetic and higher-order effects that impact gene expression. Finally, we suggest that the extended cis-trans model may help conceptually unify several presently disparate hallmarks of allopolyploid evolution, including genome-wide expression dominance and biased fractionation, and lead to a new level of understanding of phenotypic novelty accompanying polyploidy.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
5
|
Fiévet JB, Nidelet T, Dillmann C, de Vienne D. Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From in Vitro Genetics and Computer Simulations. Front Genet 2018; 9:159. [PMID: 29868111 PMCID: PMC5968397 DOI: 10.3389/fgene.2018.00159] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.
Collapse
Affiliation(s)
- Julie B Fiévet
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Thibault Nidelet
- Sciences Pour l'Œnologie, INRA, Université de Montpellier, Montpellier, France
| | - Christine Dillmann
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dominique de Vienne
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Bottani S, Zabet NR, Wendel JF, Veitia RA. Gene Expression Dominance in Allopolyploids: Hypotheses and Models. TRENDS IN PLANT SCIENCE 2018; 23:393-402. [PMID: 29433919 DOI: 10.1016/j.tplants.2018.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 05/23/2023]
Abstract
The classical example of nonadditive contributions of the two parents to allopolyploids is nucleolar dominance, which entails silencing of one parental set of ribosomal RNA genes. This has been observed for many other loci. The prevailing explanation for this genome-wide expression disparity is that the two merged genomes differ in their transposable element (TE) complement and in their level of TE-mediated repression of gene expression. Alternatively, and not exclusively, gene expression dominance may arise from mismatches between trans effectors and their targets. Here, we explore quantitative models of regulatory mismatches leading to gene expression dominance. We also suggest that, when pairs of merged genomes are similar from one allopolyploidization event to another, gene-level and genome dominance patterns should also be similar.
Collapse
Affiliation(s)
- Samuel Bottani
- Matière et Systèmes Complexes, UMR 7057, Paris 75013, France; Université Paris Diderot-Paris VII, 75205 Paris Cedex 13, France; These authors contributed equally to this work
| | - Nicolae Radu Zabet
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK; These authors contributed equally to this work
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Reiner A Veitia
- Université Paris Diderot-Paris VII, 75205 Paris Cedex 13, France; Institut Jacques Monod, Université Paris Diderot, CNRS UMR7592, Paris 75013, France.
| |
Collapse
|
7
|
Birchler JA, Johnson AF, Veitia RA. Kinetics genetics: Incorporating the concept of genomic balance into an understanding of quantitative traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:128-34. [PMID: 26940497 DOI: 10.1016/j.plantsci.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 05/21/2023]
Abstract
While most mutations are recessive, variants that affect quantitative traits are largely semi-dominant in their action making hybrids between divergent genotypes intermediate. In parallel, changes in chromosomal dosage (aneuploidy) for multiple regions of the genome modulate quantitative characters. We have previously argued that these observations are a reflection of a common process, originating from the more or less subtle effects of changes in dosage on the action of multi-subunit regulatory machineries. Kinetic analyses that vary the amount of one subunit of a complex while holding others constant do not always predict a linear response for the production of the whole. Indeed, in many instances, strong non-linear effects are expected. Here, we advocate that these kinetic observations and predictions should be incorporated into quantitative genetics thought.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States.
| | - Adam F Johnson
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Reiner A Veitia
- Institut Jacques Monod, 15 rue Helene Brion, 75013 Paris, France; Universite Paris Diderot, Paris, France
| |
Collapse
|
8
|
Veitia RA, Birchler JA. Models of buffering of dosage imbalances in protein complexes. Biol Direct 2015; 10:42. [PMID: 26275824 PMCID: PMC4537584 DOI: 10.1186/s13062-015-0063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Stoichiometric imbalances in macromolecular complexes can lead to altered function. Such imbalances stem from under- or over-expression of a subunit of a complex consequent to a deletion, duplication or regulatory mutation of an allele encoding the relevant protein. In some cases, the phenotypic perturbations induced by such alterations can be subtle or be lacking because nonlinearities in the process of protein complex assembly can provide some degree of buffering. Results We explore with biochemical models of increasing plausibility how buffering can be elicited. Specifically, we analyze the formation of a dimer AB and show that there are particular sets of parameters so that decreasing/increasing the input amount of either A or B translates into a non proportional (buffered) change of AB. The buffer effect also appears in higher-order structures provided that there are intermediate subcomplexes in the assembly process. Conclusions We highlight the importance of protein degradation and/or conformational inactivation for buffering to appear. The models sketched here have experimental support but can be further tested with existing biological resources. Reviewers This article was reviewed by Eugene Koonin, Berend Snel and Csaba Pal.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, 15 rue Hélène Brion, 75013, Paris, France. .,Université Paris Diderot, Paris, France.
| | - James A Birchler
- University of Missouri, Division of Biological Sciences, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD. DNA recombination. Recombination initiation maps of individual human genomes. Science 2014; 346:1256442. [PMID: 25395542 DOI: 10.1126/science.1256442] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA double-strand breaks (DSBs) are introduced in meiosis to initiate recombination and generate crossovers, the reciprocal exchanges of genetic material between parental chromosomes. Here, we present high-resolution maps of meiotic DSBs in individual human genomes. Comparing DSB maps between individuals shows that along with DNA binding by PRDM9, additional factors may dictate the efficiency of DSB formation. We find evidence for both GC-biased gene conversion and mutagenesis around meiotic DSB hotspots, while frequent colocalization of DSB hotspots with chromosome rearrangement breakpoints implicates the aberrant repair of meiotic DSBs in genomic disorders. Furthermore, our data indicate that DSB frequency is a major determinant of crossover rate. These maps provide new insights into the regulation of meiotic recombination and the impact of meiotic recombination on genome function.
Collapse
Affiliation(s)
- Florencia Pratto
- National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Pavel Khil
- National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Fatima Smagulova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Galina V Petukhova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, USA.
| | | |
Collapse
|
10
|
Comparative Analysis of Biologically Relevant Response Curves in Gene Expression Experiments: Heteromorphy, Heterochrony, and Heterometry. MICROARRAYS 2014; 3:39-51. [PMID: 27605029 PMCID: PMC5003454 DOI: 10.3390/microarrays3010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/17/2022]
Abstract
To gain biological insights, investigators sometimes compare sequences of gene expression measurements under two scenarios (such as two drugs or species). For this situation, we developed an algorithm to fit, identify, and compare biologically relevant response curves in terms of heteromorphy (different curves), heterochrony (different transition times), and heterometry (different magnitudes). The curves are flat, linear, sigmoid, hockey-stick (sigmoid missing a steady state), transient (sigmoid missing two steady states), impulse (with peak or trough), step (with intermediate-level plateau), impulse+ (impulse with an extra parameter), step+ (step with an extra parameter), further characterized by upward or downward trend. To reduce overfitting, we fit the curves to every other response, evaluated the fit in the remaining responses, and identified the most parsimonious curves that yielded a good fit. We measured goodness of fit using a statistic comparable over different genes, namely the square root of the mean squared prediction error as a percentage of the range of responses, which we call the relative prediction error (RPE). We illustrated the algorithm using data on gene expression at 14 times in the embryonic development in two species of frogs. Software written in Mathematica is freely available.
Collapse
|
11
|
|