1
|
Schneider KL, Ahmadpour D, Keuenhof KS, Eisele-Bürger AM, Berglund LL, Eisele F, Babazadeh R, Höög JL, Nyström T, Widlund PO. Using reporters of different misfolded proteins reveals differential strategies in processing protein aggregates. J Biol Chem 2022; 298:102476. [PMID: 36096201 PMCID: PMC9636550 DOI: 10.1016/j.jbc.2022.102476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 colocalized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling EM in which both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing.
Collapse
Affiliation(s)
- Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Katharina S Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Maria Eisele-Bürger
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lisa Larsson Berglund
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Per O Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Bayro-Kaiser V, Nelson N. Temperature Sensitive Photosynthesis: Point Mutated CEF-G, PRK, or PsbO Act as Temperature-Controlled Switches for Essential Photosynthetic Processes. FRONTIERS IN PLANT SCIENCE 2020; 11:562985. [PMID: 33101332 PMCID: PMC7545824 DOI: 10.3389/fpls.2020.562985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/04/2020] [Indexed: 05/30/2023]
Abstract
Temperature sensitive mutants have been widely used to study structure, biogenesis and function of a large variety of essential proteins. However, this method has not yet been exploited for the study of photosynthesis. We used negative selection to isolate temperature-sensitive-photoautotrophic (TSP) mutants in Chlamydomonas reinhardtii. From a population of randomly mutagenized cells (n=12,000), a significant number of TSP mutants (n=157) were isolated. They were able to grow photoautotrophically at 25°C, but lacked this ability at 37°C. Further phenotypic characterization of these mutants enabled the identification of three unique and highly interesting mutant strains. Following, the selected strains were genetically characterized by extensive crossing and whole genome sequencing. Correspondingly, the single amino acid changes P628F in the Chloroplast-Elongation-Factor-G (CEF-G), P129L in Phosphoribulokinase (PRK), and P101H in an essential subunit of Photosystem II (PsbO) were identified. These key changes alter the proteins in such way that they were functional at the permissive temperature, however, defective at the restrictive temperature. These mutants are presented here as superb and novel tools for the study of a wide range of aspects relevant to photosynthesis research, tackling three distinct and crucial photosynthetic processes: Chloroplast translation, PET-chain, and CBB-cycle.
Collapse
|
3
|
Schneider KL, Nyström T, Widlund PO. Studying Spatial Protein Quality Control, Proteopathies, and Aging Using Different Model Misfolding Proteins in S. cerevisiae. Front Mol Neurosci 2018; 11:249. [PMID: 30083092 PMCID: PMC6064742 DOI: 10.3389/fnmol.2018.00249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Protein quality control (PQC) is critical to maintain a functioning proteome. Misfolded or toxic proteins are either refolded or degraded by a system of temporal quality control and can also be sequestered into aggregates or inclusions by a system of spatial quality control. Breakdown of this concerted PQC network with age leads to an increased risk for the onset of disease, particularly neurological disease. Saccharomyces cerevisiae has been used extensively to elucidate PQC pathways and general evolutionary conservation of the PQC machinery has led to the development of several useful S. cerevisiae models of human neurological diseases. Key to both of these types of studies has been the development of several different model misfolding proteins, which are used to challenge and monitor the PQC machinery. In this review, we summarize and compare the model misfolding proteins that have been used to specifically study spatial PQC in S. cerevisiae, as well as the misfolding proteins that have been shown to be subject to spatial quality control in S. cerevisiae models of human neurological diseases.
Collapse
Affiliation(s)
- Kara L Schneider
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per O Widlund
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Valadares NF, d' Muniz Pereira H, Ulian Araujo AP, Garratt RC. Septin structure and filament assembly. Biophys Rev 2017; 9:481-500. [PMID: 28905266 DOI: 10.1007/s12551-017-0320-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Septins are able to polymerize into long apolar filaments and have long been considered to be a component of the cytoskeleton alongside intermediate filaments (which are also apolar in nature), microtubules and actin filaments (which are not). Their central guanosine triphosphate (GTP)-binding domain, which is essential for stabilizing the filament itself, is flanked by N- and C-terminal domains for which no direct structural information is yet available. In most cases, physiological filaments are built from a number of different septin monomers, and in the case of mammalian septins this is most commonly either three or four. Comprehending the structural basis for the spontaneous assembly of such filaments requires a deeper understanding of the interfaces between individual GTP-binding domains than is currently available. Nevertheless, in this review we will summarize the considerable progress which has been made over the course of the last 10 years. We will provide a brief description of each structure determined to date and comment on how it has added to the body of knowledge which is rapidly growing. Rather than simply repeat data which have already been described in the literature, as far as is possible we will try to take advantage of the full set of information now available (mostly derived from human septins) and draw the reader's attention to some of the details of the structures themselves and the filaments they form which have not be commented on previously. An additional aim is to clarify some misconceptions.
Collapse
Affiliation(s)
| | - Humberto d' Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil
| | - Ana Paula Ulian Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil.
| |
Collapse
|
5
|
Angelis D, Spiliotis ET. Septin Mutations in Human Cancers. Front Cell Dev Biol 2016; 4:122. [PMID: 27882315 PMCID: PMC5101219 DOI: 10.3389/fcell.2016.00122] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC) database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4, and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.
Collapse
|
6
|
An extended loop in CE7 carbohydrate esterase family is dispensable for oligomerization but required for activity and thermostability. J Struct Biol 2016; 194:434-45. [DOI: 10.1016/j.jsb.2016.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/20/2022]
|
7
|
McMurray MA. Assays for genetic dissection of septin filament assembly in yeast, from de novo folding through polymerization. Methods Cell Biol 2016; 136:99-116. [PMID: 27473905 DOI: 10.1016/bs.mcb.2016.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In Saccharomyces cerevisiae, septin mutations have severe effects on colony-forming ability, particularly at high temperatures, allowing the full variety of genetic tools available in this model organism to be applied to the study of septin biology. Although many details of septin function remain unknown, one can exploit a small number of easily scored phenotypes-proliferation capacity, cell morphology, septin localization, and septin ring integrity-as sensitive readouts of properly assembled septin filaments. Accordingly, this chapter focuses on genetic approaches targeted toward understanding the molecular mechanisms of de novo septin folding, heterooligomerization, and polymerization into filaments. The same general methods can be used to interrogate septin function, although interpretation of results can be more complicated. As genetic-based methodologies are technically simple but particularly dependent on interpretation, here I focus on the logic underlying the most common interpretations of results using septin mutants.
Collapse
Affiliation(s)
- M A McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
8
|
Veitia RA, Birchler JA. Models of buffering of dosage imbalances in protein complexes. Biol Direct 2015; 10:42. [PMID: 26275824 PMCID: PMC4537584 DOI: 10.1186/s13062-015-0063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Stoichiometric imbalances in macromolecular complexes can lead to altered function. Such imbalances stem from under- or over-expression of a subunit of a complex consequent to a deletion, duplication or regulatory mutation of an allele encoding the relevant protein. In some cases, the phenotypic perturbations induced by such alterations can be subtle or be lacking because nonlinearities in the process of protein complex assembly can provide some degree of buffering. Results We explore with biochemical models of increasing plausibility how buffering can be elicited. Specifically, we analyze the formation of a dimer AB and show that there are particular sets of parameters so that decreasing/increasing the input amount of either A or B translates into a non proportional (buffered) change of AB. The buffer effect also appears in higher-order structures provided that there are intermediate subcomplexes in the assembly process. Conclusions We highlight the importance of protein degradation and/or conformational inactivation for buffering to appear. The models sketched here have experimental support but can be further tested with existing biological resources. Reviewers This article was reviewed by Eugene Koonin, Berend Snel and Csaba Pal.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, 15 rue Hélène Brion, 75013, Paris, France. .,Université Paris Diderot, Paris, France.
| | - James A Birchler
- University of Missouri, Division of Biological Sciences, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Veitia RA, Potier MC. Gene dosage imbalances: action, reaction, and models. Trends Biochem Sci 2015; 40:309-17. [PMID: 25937627 DOI: 10.1016/j.tibs.2015.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/17/2015] [Accepted: 03/27/2015] [Indexed: 12/29/2022]
Abstract
Single-gene deletions, duplications, and misregulation, as well as aneuploidy, can lead to stoichiometric imbalances within macromolecular complexes and cellular networks, causing their malfunction. Such alterations can be responsible for inherited or somatic genetic disorders including Mendelian diseases, aneuploid syndromes, and cancer. We review the effects of gene dosage alterations at the transcriptomic and proteomic levels, and the various responses of the cell to counteract their effects. Furthermore, we explore several biochemical models and ideas that can provide the rationale for treatments modulating the effects of gene dosage imbalances.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Paris, France; Université Paris Diderot, Paris, France.
| | - Marie Claude Potier
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| |
Collapse
|
10
|
Johnson CR, Weems AD, Brewer JM, Thorner J, McMurray MA. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast. Mol Biol Cell 2015; 26:1323-44. [PMID: 25673805 PMCID: PMC4454179 DOI: 10.1091/mbc.e14-11-1531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases.
Collapse
Affiliation(s)
- Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jennifer M Brewer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|