1
|
Stefanova ME, Volokh OI, Chertkov OV, Armeev GA, Shaytan AK, Feofanov AV, Kirpichnikov MP, Sokolova OS, Studitsky VM. Structure and Dynamics of Compact Dinucleosomes: Analysis by Electron Microscopy and spFRET. Int J Mol Sci 2023; 24:12127. [PMID: 37569503 PMCID: PMC10419094 DOI: 10.3390/ijms241512127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Formation of compact dinucleosomes (CODIs) occurs after collision between adjacent nucleosomes at active regulatory DNA regions. Although CODIs are likely dynamic structures, their structural heterogeneity and dynamics were not systematically addressed. Here, single-particle Förster resonance energy transfer (spFRET) and electron microscopy were employed to study the structure and dynamics of CODIs. spFRET microscopy in solution and in gel revealed considerable uncoiling of nucleosomal DNA from the histone octamer in a fraction of CODIs, suggesting that at least one of the nucleosomes is destabilized in the presence of the adjacent closely positioned nucleosome. Accordingly, electron microscopy analysis suggests that up to 30 bp of nucleosomal DNA are involved in transient uncoiling/recoiling on the octamer. The more open and dynamic nucleosome structure in CODIs cannot be stabilized by histone chaperone Spt6. The data suggest that proper internucleosomal spacing is an important determinant of chromatin stability and support the possibility that CODIs could be intermediates of chromatin disruption.
Collapse
Affiliation(s)
- Maria E. Stefanova
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Olesya I. Volokh
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Oleg V. Chertkov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Grigory A. Armeev
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Alexey K. Shaytan
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Olga S. Sokolova
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Biological Faculty, MSU-BIT Shenzhen University, Shenzhen 518115, China
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
2
|
Neumann H, Jeronimo C, Lucier JF, Pasquier E, Robert F, Wellinger RJ, Gaudreau L. The Histone Variant H2A.Z C-Terminal Domain Has Locus-Specific Differential Effects on H2A.Z Occupancy and Nucleosome Localization. Microbiol Spectr 2023; 11:e0255022. [PMID: 36815792 PMCID: PMC10100702 DOI: 10.1128/spectrum.02550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023] Open
Abstract
The incorporation of histone variant H2A.Z into nucleosomes creates specialized chromatin domains that regulate DNA-templated processes, such as gene transcription. In Saccharomyces cerevisiae, the diverging H2A.Z C terminus is thought to provide the H2A.Z exclusive functions. To elucidate the roles of this H2A.Z C terminus genome-wide, we used derivatives in which the C terminus was replaced with the corresponding region of H2A (ZA protein), or the H2A region plus a transcriptional activating peptide (ZA-rII'), with the intent of regenerating the H2A.Z-dependent regulation globally. The distribution of these H2A.Z derivatives indicates that the H2A.Z C-terminal region is crucial for both maintaining the occupation level of H2A.Z and the proper positioning of targeted nucleosomes. Interestingly, the specific contribution on incorporation efficiency versus nucleosome positioning varies enormously depending on the locus analyzed. Specifically, the role of H2A.Z in global transcription regulation relies on its C-terminal region. Remarkably, however, this mostly involves genes without a H2A.Z nucleosome in the promoter. Lastly, we demonstrate that the main chaperone complex which deposits H2A.Z to gene regulatory region (SWR1-C) is necessary to localize all H2A.Z derivatives at their specific loci, indicating that the differential association of these derivatives is not due to impaired interaction with SWR1-C. IMPORTANCE We provide evidence that the Saccharomyces cerevisiae C-terminal region of histone variant H2A.Z can mediate its special function in performing gene regulation by interacting with effector proteins and chaperones. These functional interactions allow H2A.Z not only to incorporate to very specific gene regulatory regions, but also to facilitate the gene expression process. To achieve this, we used a chimeric protein which lacks the native H2A.Z C-terminal region but contains an acidic activating region, a module that is known to interact with components of chromatin-remodeling entities and/or transcription modulators. We reasoned that because this activating region can fulfill the role of the H2A.Z C-terminal region, at least in part, the role of the latter would be to interact with these activating region targets.
Collapse
Affiliation(s)
- Hannah Neumann
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Celia Jeronimo
- Montreal Clinical Research Institute, Montréal, Quebec, Canada
| | - Jean-François Lucier
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Emeline Pasquier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Robert
- Montreal Clinical Research Institute, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Gaudreau
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
McCauley MJ, Morse M, Becker N, Hu Q, Botuyan MV, Navarrete E, Huo R, Muthurajan UM, Rouzina I, Luger K, Mer G, Maher LJ, Williams MC. Human FACT subunits coordinate to catalyze both disassembly and reassembly of nucleosomes. Cell Rep 2022; 41:111858. [PMID: 36577379 PMCID: PMC9807050 DOI: 10.1016/j.celrep.2022.111858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
The histone chaperone FACT (facilitates chromatin transcription) enhances transcription in eukaryotic cells, targeting DNA-protein interactions. FACT, a heterodimer in humans, comprises SPT16 and SSRP1 subunits. We measure nucleosome stability and dynamics in the presence of FACT and critical component domains. Optical tweezers quantify FACT/subdomain binding to nucleosomes, displacing the outer wrap of DNA, disrupting direct DNA-histone (core site) interactions, altering the energy landscape of unwrapping, and increasing the kinetics of DNA-histone disruption. Atomic force microscopy reveals nucleosome remodeling, while single-molecule fluorescence quantifies kinetics of histone loss for disrupted nucleosomes, a process accelerated by FACT. Furthermore, two isolated domains exhibit contradictory functions; while the SSRP1 HMGB domain displaces DNA, SPT16 MD/CTD stabilizes DNA-H2A/H2B dimer interactions. However, only intact FACT tethers disrupted DNA to the histones and supports rapid nucleosome reformation over several cycles of force disruption/release. These results demonstrate that key FACT domains combine to catalyze both nucleosome disassembly and reassembly.
Collapse
Affiliation(s)
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Nicole Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Emily Navarrete
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Ran Huo
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Uma M. Muthurajan
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado, Boulder, CO, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA, USA,Lead contact,Correspondence:
| |
Collapse
|
4
|
Jeronimo C, Robert F. The histone chaperone FACT: a guardian of chromatin structure integrity. Transcription 2022; 13:16-38. [PMID: 35485711 PMCID: PMC9467567 DOI: 10.1080/21541264.2022.2069995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of FACT as a histone chaperone enabling transcription through chromatin in vitro has strongly shaped how its roles are envisioned. However, FACT has been implicated in essentially all aspects of chromatin biology, from transcription to DNA replication, DNA repair, and chromosome segregation. In this review, we focus on recent literature describing the role and mechanisms of FACT during transcription. We highlight the prime importance of FACT in preserving chromatin integrity during transcription and challenge its role as an elongation factor. We also review evidence for FACT's role as a cell-type/gene-specificregulator of gene expression and briefly summarize current efforts at using FACT inhibition as an anti-cancerstrategy.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Narain A, Bhandare P, Adhikari B, Backes S, Eilers M, Dölken L, Schlosser A, Erhard F, Baluapuri A, Wolf E. Targeted protein degradation reveals a direct role of SPT6 in RNAPII elongation and termination. Mol Cell 2021; 81:3110-3127.e14. [PMID: 34233157 PMCID: PMC8354102 DOI: 10.1016/j.molcel.2021.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/24/2021] [Accepted: 06/11/2021] [Indexed: 01/22/2023]
Abstract
SPT6 is a histone chaperone that tightly binds RNA polymerase II (RNAPII) during transcription elongation. However, its primary role in transcription is uncertain. We used targeted protein degradation to rapidly deplete SPT6 in human cells and analyzed defects in RNAPII behavior by a multi-omics approach and mathematical modeling. Our data indicate that SPT6 is a crucial factor for RNAPII processivity and is therefore required for the productive transcription of protein-coding genes. Unexpectedly, SPT6 also has a vital role in RNAPII termination, as acute depletion induced readthrough transcription for thousands of genes. Long-term depletion of SPT6 induced cryptic intragenic transcription, as observed earlier in yeast. However, this phenotype was not observed upon acute SPT6 depletion and therefore can be attributed to accumulated epigenetic perturbations in the prolonged absence of SPT6. In conclusion, targeted degradation of SPT6 allowed the temporal discrimination of its function as an epigenetic safeguard and RNAPII elongation factor. Auxin-inducible degradation discriminates direct roles of human SPT6 in transcription Acute loss of SPT6 globally impairs RNAPII processivity and speed SPT6 is required for efficient transcription termination on protein-coding genes Long-term loss of SPT6 ultimately results in cryptic intragenic transcription
Collapse
Affiliation(s)
- Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Florian Erhard
- Computational Systems Virology and Bioinformatics, Institute for Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany.
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University of Würzburg, Beethovenstraße 1A, 97080 Würzburg, Germany.
| |
Collapse
|
6
|
Jeronimo C, Poitras C, Robert F. Histone Recycling by FACT and Spt6 during Transcription Prevents the Scrambling of Histone Modifications. Cell Rep 2020; 28:1206-1218.e8. [PMID: 31365865 DOI: 10.1016/j.celrep.2019.06.097] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Genomic DNA is framed by additional layers of information, referred to as the epigenome. Epigenomic marks such as DNA methylation, histone modifications, and histone variants are concentrated on specific genomic sites, where they can both instruct and reflect gene expression. How this information is maintained, notably in the face of transcription, is not completely understood. Specifically, the extent to which modified histones themselves are retained through RNA polymerase II passage is unclear. Here, we show that several histone modifications are mislocalized when the transcription-coupled histone chaperones FACT or Spt6 are disrupted in Saccharomyces cerevisiae. In the absence of functional FACT or Spt6, transcription generates nucleosome loss, which is partially compensated for by the increased activity of non-transcription-coupled histone chaperones. The random incorporation of transcription-evicted modified histones scrambles epigenomic information. Our work highlights the importance of local recycling of modified histones by FACT and Spt6 during transcription in the maintenance of the epigenomic landscape.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Christian Poitras
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC, Canada.
| |
Collapse
|
7
|
Dronamraju R, Kerschner JL, Peck SA, Hepperla AJ, Adams AT, Hughes KD, Aslam S, Yoblinski AR, Davis IJ, Mosley AL, Strahl BD. Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction. Cell Rep 2019; 25:3476-3489.e5. [PMID: 30566871 PMCID: PMC6347388 DOI: 10.1016/j.celrep.2018.11.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Spt6 is a histone chaperone that associates with RNA polymerase II and deposits nucleosomes in the wake of transcription. Although Spt6 has an essential function in nucleosome deposition, it is not known whether this function is influenced by post-translational modification. Here, we report that casein kinase II (CKII) phosphorylation of Spt6 is required for nucleosome occupancy at the 5′ ends of genes to prevent aberrant antisense transcription and enforce transcriptional directionality. Mechanistically, we show that CKII phosphorylation of Spt6 promotes the interaction of Spt6 with Spn1, a binding partner required for chromatin reassembly and full recruitment of Spt6 to genes. Our study defines a function for CKII phosphorylation in transcription and highlights the importance of post-translational modification in histone chaperone function. Dronamraju et al. show that the N terminus of Spt6 is phosphorylated by casein kinase II, which is required for proper Spt6-Spn1 interaction. CKII phosphorylation of Spt6 is pivotal to maintain nucleosome occupancy at the 5′ ends of genes, suppression of antisense transcription from the 5′ ends, and resistance to genotoxic agents.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jenny L Kerschner
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander T Adams
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sadia Aslam
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew R Yoblinski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Gurova K, Chang HW, Valieva ME, Sandlesh P, Studitsky VM. Structure and function of the histone chaperone FACT - Resolving FACTual issues. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30159-7. [PMID: 30055319 PMCID: PMC6349528 DOI: 10.1016/j.bbagrm.2018.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
FAcilitates Chromatin Transcription (FACT) has been considered essential for transcription through chromatin mostly based on cell-free experiments. However, FACT inactivation in cells does not cause a significant reduction in transcription. Moreover, not all mammalian cells require FACT for viability. Here we synthesize information from different organisms to reveal the core function(s) of FACT and propose a model that reconciles the cell-free and cell-based observations. We describe FACT structure and nucleosomal interactions, and their roles in FACT-dependent transcription, replication and repair. The variable requirements for FACT among different tumor and non-tumor cells suggest that various FACT-dependent processes have significantly different levels of relative importance in different eukaryotic cells. We propose that the stability of chromatin, which might vary among different cell types, dictates these diverse requirements for FACT to support cell viability. Since tumor cells are among the most sensitive to FACT inhibition, this vulnerability could be exploited for cancer treatment.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria E Valieva
- Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Vasily M Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biology Faculty, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
9
|
Uwimana N, Collin P, Jeronimo C, Haibe-Kains B, Robert F. Bidirectional terminators in Saccharomyces cerevisiae prevent cryptic transcription from invading neighboring genes. Nucleic Acids Res 2017; 45:6417-6426. [PMID: 28383698 PMCID: PMC5499651 DOI: 10.1093/nar/gkx242] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
Transcription can be quite disruptive for chromatin so cells have evolved mechanisms to preserve chromatin integrity during transcription, thereby preventing the emergence of cryptic transcripts from spurious promoter sequences. How these transcripts are regulated and processed remains poorly characterized. Notably, very little is known about the termination of cryptic transcripts. Here, we used RNA-Seq to identify and characterize cryptic transcripts in Spt6 mutant cells (spt6-1004) in Saccharomyces cerevisiae. We found polyadenylated cryptic transcripts running both sense and antisense relative to genes in this mutant. Cryptic promoters were enriched for TATA boxes, suggesting that the underlying DNA sequence defines the location of cryptic promoters. While intragenic sense cryptic transcripts terminate at the terminator of the genes that host them, we found that antisense cryptic transcripts preferentially terminate near the 3΄-end of the upstream gene. This finding led us to demonstrate that most terminators in yeast are bidirectional, leading to termination and polyadenylation of transcripts coming from both directions. We propose that S. cerevisiae has evolved this mechanism in order to prevent/attenuate spurious transcription from invading neighbouring genes, a feature that is particularly critical for organisms with small compact genomes.
Collapse
Affiliation(s)
- Nicole Uwimana
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Pierre Collin
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario M5G 1L7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
10
|
CENP-A chromatin disassembly in stressed and senescent murine cells. Sci Rep 2017; 7:42520. [PMID: 28186195 PMCID: PMC5301216 DOI: 10.1038/srep42520] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
Centromeres are chromosomal domains essential for genomic stability. We report here the remarkable transcriptional and epigenetic perturbations at murine centromeres in genotoxic stress conditions. A strong and selective transcriptional activation of centromeric repeats is detected within hours. This is followed by disorganization of centromeres with striking delocalization of nucleosomal CENP-A, the key determinant of centromere identity and function, in a mechanism requiring active transcription of centromeric repeats, the DNA Damage Response (DDR) effector ATM and chromatin remodelers/histone chaperones. In the absence of p53 checkpoint, activated transcription of centromeric repeats and CENP-A delocalization do not occur and cells accumulate micronuclei indicative of genomic instability. In addition, activated transcription and loss of centromeres identity are features of permanently arrested senescent cells with persistent DDR activation. Together, these findings bring out cooperation between DDR effectors and loss of centromere integrity as a safeguard mechanism to prevent genomic instability in context of persistent DNA damage signalling.
Collapse
|
11
|
Reddy BA, Jeronimo C, Robert F. Recent Perspectives on the Roles of Histone Chaperones in Transcription Regulation. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40610-017-0049-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|