1
|
Giambruno R, Nicassio F. Proximity-dependent biotinylation technologies for mapping RNA-protein interactions in live cells. Front Mol Biosci 2022; 9:1062448. [PMID: 36452457 PMCID: PMC9702341 DOI: 10.3389/fmolb.2022.1062448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
Proximity ligation technologies are extremely powerful tools for unveiling RNA-protein interactions occurring at different stages in living cells. These approaches mainly rely on the inducible activity of enzymes (biotin ligases or peroxidases) that promiscuously biotinylate macromolecules within a 20 nm range. These enzymes can be either fused to an RNA binding protein or tethered to any RNA of interest and expressed in living cells to biotinylate the amino acids and nucleic acids of binding partners in proximity. The biotinylated molecules can then be easily affinity purified under denaturing conditions and analyzed by mass spectrometry or next generation sequencing. These approaches have been widely used in recent years, providing a potent instrument to map the molecular interactions of specific RNA-binding proteins as well as RNA transcripts occurring in mammalian cells. In addition, they permit the identification of transient interactions as well as interactions among low expressed molecules that are often missed by standard affinity purification strategies. This review will provide a brief overview of the currently available proximity ligation methods, highlighting both their strengths and shortcomings. Furthermore, it will bring further insights to the way these technologies could be further used to characterize post-transcriptional modifications that are known to regulate RNA-protein interactions.
Collapse
Affiliation(s)
- Roberto Giambruno
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
2
|
van Tartwijk FW, Kaminski CF. Protein Condensation, Cellular Organization, and Spatiotemporal Regulation of Cytoplasmic Properties. Adv Biol (Weinh) 2022; 6:e2101328. [PMID: 35796197 DOI: 10.1002/adbi.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Indexed: 01/28/2023]
Abstract
The cytoplasm is an aqueous, highly crowded solution of active macromolecules. Its properties influence the behavior of proteins, including their folding, motion, and interactions. In particular, proteins in the cytoplasm can interact to form phase-separated assemblies, so-called biomolecular condensates. The interplay between cytoplasmic properties and protein condensation is critical in a number of functional contexts and is the subject of this review. The authors first describe how cytoplasmic properties can affect protein behavior, in particular condensate formation, and then describe the functional implications of this interplay in three cellular contexts, which exemplify how protein self-organization can be adapted to support certain physiological phenotypes. The authors then describe the formation of RNA-protein condensates in highly polarized cells such as neurons, where condensates play a critical role in the regulation of local protein synthesis, and describe how different stressors trigger extensive reorganization of the cytoplasm, both through signaling pathways and through direct stress-induced changes in cytoplasmic properties. Finally, the authors describe changes in protein behavior and cytoplasmic properties that may occur in extremophiles, in particular organisms that have adapted to inhabit environments of extreme temperature, and discuss the implications and functional importance of these changes.
Collapse
Affiliation(s)
- Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
3
|
Gupta P, Khadake RM, Panja S, Shinde K, Rode AB. Alternative RNA Conformations: Companion or Combatant. Genes (Basel) 2022; 13:1930. [PMID: 36360167 PMCID: PMC9689429 DOI: 10.3390/genes13111930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 09/06/2024] Open
Abstract
RNA molecules, in one form or another, are involved in almost all aspects of cell physiology, as well as in disease development. The diversity of the functional roles of RNA comes from its intrinsic ability to adopt complex secondary and tertiary structures, rivaling the diversity of proteins. The RNA molecules form dynamic ensembles of many interconverting conformations at a timescale of seconds, which is a key for understanding how they execute their cellular functions. Given the crucial role of RNAs in various cellular processes, we need to understand the RNA molecules from a structural perspective. Central to this review are studies aimed at revealing the regulatory role of conformational equilibria in RNA in humans to understand genetic diseases such as cancer and neurodegenerative diseases, as well as in pathogens such as bacteria and viruses so as to understand the progression of infectious diseases. Furthermore, we also summarize the prior studies on the use of RNA structures as platforms for the rational design of small molecules for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | - Ambadas B. Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad—Gurugram Expressway, Faridabad 121001, India
| |
Collapse
|
4
|
Abstract
Viruses have evolved precise mechanisms for using the cellular physiological pathways for their perpetuation. These virus-driven biochemical events must be separated in space and time from those of the host cell. In recent years, granular structures, known for over a century for rabies virus, were shown to host viral gene function and were named using terms such as viroplasms, replication sites, inclusion bodies, or viral factories (VFs). More recently, these VFs were shown to be liquid-like, sharing properties with membrane-less organelles driven by liquid–liquid phase separation (LLPS) in a process widely referred to as biomolecular condensation. Some of the best described examples of these structures come from negative stranded RNA viruses, where micrometer size VFs are formed toward the end of the infectious cycle. We here discuss some basic principles of LLPS in connection with several examples of VFs and propose a view, which integrates viral replication mechanisms with the biochemistry underlying liquid-like organelles. In this view, viral protein and RNA components gradually accumulate up to a critical point during infection where phase separation is triggered. This yields an increase in transcription that leads in turn to increased translation and a consequent growth of initially formed condensates. According to chemical principles behind phase separation, an increase in the concentration of components increases the size of the condensate. A positive feedback cycle would thus generate in which crucial components, in particular nucleoproteins and viral polymerases, reach their highest levels required for genome replication. Progress in understanding viral biomolecular condensation leads to exploration of novel therapeutics. Furthermore, it provides insights into the fundamentals of phase separation in the regulation of cellular gene function given that virus replication and transcription, in particular those requiring host polymerases, are governed by the same biochemical principles.
Collapse
|
5
|
Sankaranarayanan M, Weil TT. Granule regulation by phase separation during Drosophila oogenesis. Emerg Top Life Sci 2020; 4:343-352. [PMID: 32573699 PMCID: PMC7733668 DOI: 10.1042/etls20190155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Drosophila eggs are highly polarised cells that use RNA-protein complexes to regulate storage and translational control of maternal RNAs. Ribonucleoprotein granules are a class of biological condensates that form predominantly by intracellular phase separation. Despite extensive in vitro studies testing the physical principles regulating condensates, how phase separation translates to biological function remains largely unanswered. In this perspective, we discuss granules in Drosophila oogenesis as a model system for investigating the physiological role of phase separation. We review key maternal granules and their properties while highlighting ribonucleoprotein phase separation behaviours observed during development. Finally, we discuss how concepts and models from liquid-liquid phase separation could be used to test mechanisms underlying granule assembly, regulation and function in Drosophila oogenesis.
Collapse
Affiliation(s)
- M Sankaranarayanan
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, U.K
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, U.K
| |
Collapse
|
6
|
Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol 2020; 20:474-489. [PMID: 31182864 DOI: 10.1038/s41580-019-0136-0] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNAs fold into 3D structures that range from simple helical elements to complex tertiary structures and quaternary ribonucleoprotein assemblies. The functions of many regulatory RNAs depend on how their 3D structure changes in response to a diverse array of cellular conditions. In this Review, we examine how the structural characterization of RNA as dynamic ensembles of conformations, which form with different probabilities and at different timescales, is improving our understanding of RNA function in cells. We discuss the mechanisms of gene regulation by microRNAs, riboswitches, ribozymes, post-transcriptional RNA modifications and RNA-binding proteins, and how the cellular environment and processes such as liquid-liquid phase separation may affect RNA folding and activity. The emerging RNA-ensemble-function paradigm is changing our perspective and understanding of RNA regulation, from in vitro to in vivo and from descriptive to predictive.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.,Department of Chemical Engineering, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA. .,Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Stackpole EE, Akins MR, Ivshina M, Murthy AC, Fawzi NL, Fallon JR. EGFP insertional mutagenesis reveals multiple FXR2P fibrillar states with differing ribosome association in neurons. Biol Open 2019; 8:8/8/bio046383. [PMID: 31434643 PMCID: PMC6737979 DOI: 10.1242/bio.046383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RNA-binding proteins (RBPs) function in higher-order assemblages such as RNA granules to regulate RNA localization and translation. The Fragile X homolog FXR2P is an RBP essential for formation of neuronal Fragile X granules that associate with axonal mRNA and ribosomes in the intact brain. However, the FXR2P domains important for assemblage formation in a cellular system are unknown. Here we used an EGFP insertional mutagenesis approach to probe for FXR2P intrinsic features that influence its structural states. We tested 18 different in-frame FXR2PEGFP fusions in neurons and found that the majority did not impact assemblage formation. However, EGFP insertion within a 23 amino acid region of the low complexity (LC) domain induced FXR2PEGFP assembly into two distinct fibril states that were observed in isolation or in highly-ordered bundles. FXR2PEGFP fibrils exhibited different developmental timelines, ultrastructures and ribosome associations. Formation of both fibril types was dependent on an intact RNA-binding domain. These results suggest that restricted regions of the LC domain, together with the RNA-binding domain, may be important for FXR2P structural state organization in neurons. Summary: A mutagenesis study reveals that the higher-order structural states of the RBP FXR2P in neurons can be regulated by manipulation of the LC and RNA-binding domains.
Collapse
Affiliation(s)
- Emily E Stackpole
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Maria Ivshina
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Santarriaga S, Fikejs A, Scaglione J, Scaglione KM. A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development. mSphere 2019; 4:e00314-19. [PMID: 31217303 PMCID: PMC6584373 DOI: 10.1128/msphere.00314-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
The social amoeba Dictyostelium discoideum's proteome contains a vast array of simple sequence repeats, providing a unique model to investigate proteostasis. Upon conditions of cellular stress, D. discoideum undergoes a developmental process, transitioning from a unicellular amoeba to a multicellular fruiting body. Little is known about how proteostasis is maintained during D. discoideum's developmental process. Here, we have identified a novel α-crystallin domain-containing protein, heat shock protein 48 (HSP48), that is upregulated during D. discoideum development. HSP48 functions in part by forming a biomolecular condensate via its highly positively charged intrinsically disordered carboxy terminus. In addition to HSP48, the highly negatively charged primordial chaperone polyphosphate is also upregulated during D. discoideum development, and polyphosphate functions to stabilize HSP48. Upon germination, levels of both HSP48 and polyphosphate dramatically decrease, consistent with a role for HSP48 and polyphosphate during development. Together, our data demonstrate that HSP48 is strongly induced during Dictyostelium discoideum development. We also demonstrate that HSP48 forms a biomolecular condensate and that polyphosphate is necessary to stabilize the HSP48 biomolecular condensate.IMPORTANCE During cellular stress, many microbes undergo a transition to a dormant state. This includes the social amoeba Dictyostelium discoideum that transitions from a unicellular amoeba to a multicellular fruiting body upon starvation. In this work, we identify heat shock protein 48 (HSP48) as a chaperone that is induced during development. We also show that HSP48 forms a biomolecular condensate and is stabilized by polyphosphate. The findings here identify Dictyostelium discoideum as a novel microbe to investigate protein quality control pathways during the transition to dormancy.
Collapse
Affiliation(s)
| | - Alicia Fikejs
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jamie Scaglione
- Department of Computational and Physical Sciences, Carroll University, Waukesha, Wisconsin, USA
| | - K Matthew Scaglione
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
The Major RNA-Binding Protein ProQ Impacts Virulence Gene Expression in Salmonella enterica Serovar Typhimurium. mBio 2019; 10:mBio.02504-18. [PMID: 30602583 PMCID: PMC6315103 DOI: 10.1128/mbio.02504-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3'UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs.IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.
Collapse
|
10
|
Nikolic J, Lagaudrière-Gesbert C, Scrima N, Blondel D, Gaudin Y. Structure and Function of Negri Bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:111-127. [PMID: 31317498 DOI: 10.1007/978-3-030-14741-9_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Replication and assembly of many viruses occur in viral factories which are specialized intracellular compartments formed during viral infection. For rabies virus, those viral factories are called Negri bodies (NBs). NBs are cytoplasmic inclusion bodies in which viral RNAs (mRNAs as well as genomic and antigenomic RNAs) are synthesized. NBs are spherical, they can fuse together, and can reversibly deform when encountering a physical barrier. All these characteristics are similar to those of eukaryotic membrane-less liquid organelles which contribute to the compartmentalization of the cell interior. Indeed, the liquid nature of NBs has been confirmed by FRAP experiments. The co-expression of rabies virus nucleoprotein N and phosphoprotein P is sufficient to induce the formation of cytoplasmic inclusions recapitulating NBs properties. Remarkably, P and N have features similar to those of cellular proteins involved in liquid organelles formation: N is an RNA-binding protein and P contains intrinsically disordered domains. An overview of the literature indicates that formation of liquid viral factories by phase separation is probably common among Mononegavirales. This allows specific recruitment and concentration of viral proteins. Finally, as virus-associated molecular patterns recognized by cellular sensors of RNA virus replication are probably essentially present in the viral factory, there should be a subtle interplay (which remains to be characterized) between those liquid structures and the cellular proteins which trigger the innate immune response.
Collapse
Affiliation(s)
- Jovan Nikolic
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
| |
Collapse
|
11
|
Nakatani N, Sakuta H, Hayashi M, Tanaka S, Takiguchi K, Tsumoto K, Yoshikawa K. Specific Spatial Localization of Actin and DNA in a Water/Water Microdroplet: Self-Emergence of a Cell-Like Structure. Chembiochem 2018; 19:1370-1374. [PMID: 29676062 PMCID: PMC6055874 DOI: 10.1002/cbic.201800066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Indexed: 01/04/2023]
Abstract
The effect of binary hydrophilic polymers on a pair of representative bio-macromolecules in a living cell has been examined. The results showed that these bio-macromolecules exhibited specific localization in cell-sized droplets that were spontaneously formed through water/water microphase segregation under crowding conditions with coexisting polymers. In these experiments, a simple binary polymer system with poly(ethylene glycol) (PEG) and dextran (DEX) was used. Under the conditions of microphase segregation, DNA was entrapped within cell-sized droplets rich in DEX. Similarly, F-actin, linearly polymerized actin, was entrapped specifically within microdroplets rich in DEX, whereas G-actin, a monomeric actin, was distributed evenly inside and outside these droplets. This study has been extended to a system with both F-actin and DNA, and it was found that DNA molecules were localized separately from aligned F-actin proteins to create microdomains inside microdroplets, reflecting the self-emergence of a cellular morphology similar to a stage of cell division.
Collapse
Affiliation(s)
- Naoki Nakatani
- Graduate School of Life and Medical SciencesDoshisha UniversityTataramiyakodani 1–3KyotanabeKyoto610-0394Japan
| | - Hiroki Sakuta
- Graduate School of Life and Medical SciencesDoshisha UniversityTataramiyakodani 1–3KyotanabeKyoto610-0394Japan
| | - Masahito Hayashi
- Graduate School of ScienceNagoya UniversityFuro-choChikusa-kuNagoya, Aichi464-8602Japan
- Laboratory for Molecular BiophysicsRIKENCenter for Brain ScienceHirosawa 2–1WakoSaitama351-0198Japan
| | - Shunsuke Tanaka
- Graduate School of ScienceNagoya UniversityFuro-choChikusa-kuNagoya, Aichi464-8602Japan
| | - Kingo Takiguchi
- Graduate School of ScienceNagoya UniversityFuro-choChikusa-kuNagoya, Aichi464-8602Japan
| | - Kanta Tsumoto
- Division of Chemistry for MaterialsGraduate School of EngineeringMie UniversityKurimamachiya-cho 1577TsuMie514-8507Japan
| | - Kenichi Yoshikawa
- Graduate School of Life and Medical SciencesDoshisha UniversityTataramiyakodani 1–3KyotanabeKyoto610-0394Japan
| |
Collapse
|
12
|
Berry J, Brangwynne CP, Haataja M. Physical principles of intracellular organization via active and passive phase transitions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:046601. [PMID: 29313527 DOI: 10.1088/1361-6633/aaa61e] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Collapse
Affiliation(s)
- Joel Berry
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
13
|
Bisogno LS, Keene JD. RNA regulons in cancer and inflammation. Curr Opin Genet Dev 2017; 48:97-103. [PMID: 29175729 DOI: 10.1016/j.gde.2017.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Gene expression is the fundamental driving force that coordinates normal cellular processes and adapts to dysfunctional conditions such as oncogenic development and progression. While transcription is the basal process of gene expression, RNA transcripts are both the templates that encode proteins as well as perform functions that directly regulate diverse cellular processes. All levels of gene expression require coordination to optimize available resources, but how global gene expression drives cancers or responds to disrupting oncogenic mutations is not understood. Post-transcriptional coordination is controlled by RNA regulons that are governed by RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) that bind and regulate multiple overlapping groups of functionally related RNAs. RNA regulons have been demonstrated to affect many biological functions and diseases, and many examples are known to regulate protein production in cancer and immune cells. In this review, we discuss RNA regulons demonstrated to coordinate global post-transcriptional mechanisms in carcinogenesis and inflammation.
Collapse
Affiliation(s)
- Laura Simone Bisogno
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Jack Donald Keene
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
14
|
Auboeuf D. Alternative mRNA processing sites decrease genetic variability while increasing functional diversity. Transcription 2017; 9:75-87. [PMID: 29099315 PMCID: PMC5834221 DOI: 10.1080/21541264.2017.1373891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent large-scale RNA sequencing efforts have revealed the extensive diversity of mRNA molecules produced from most eukaryotic coding genes, which arises from the usage of alternative, cryptic or non-canonical splicing and intronic polyadenylation sites. The prevailing view regarding the tremendous diversity of coding gene transcripts is that mRNA processing is a flexible and more-or-less noisy process leading to a diversity of proteins on which natural selection can act depending on protein-mediated cellular functions. However, this concept raises two main questions. First, do alternative mRNA processing pathways have a role other than generating mRNA and protein diversity? Second, is the cellular function of mRNA variants restricted to the biogenesis of functional protein isoforms? Here, I propose that the co-transcriptional use of alternative mRNA processing sites allows first, the resolution of co-transcriptional biophysical constraints that may otherwise result in DNA instability, and second, increases the diversity of cellular functions of mRNAs in a manner that is not restricted to protein synthesis.
Collapse
Affiliation(s)
- Didier Auboeuf
- a Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell , 46 Allée d'Italie Site Jacques Monod, Lyon , France
| |
Collapse
|
15
|
Jin M, Fuller GG, Han T, Yao Y, Alessi AF, Freeberg MA, Roach N, Moresco JJ, Karnovsky A, Baba M, Yates JR, Gitler AD, Inoki K, Klionsky DJ, Kim JK. Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 2017; 20:895-908. [PMID: 28746874 PMCID: PMC5586494 DOI: 10.1016/j.celrep.2017.06.082] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Glycolysis is upregulated under conditions such as hypoxia and high energy demand to promote cell proliferation, although the mechanism remains poorly understood. We find that hypoxia in Saccharomyces cerevisiae induces concentration of glycolytic enzymes, including the Pfk2p subunit of the rate-limiting phosphofructokinase, into a single, non-membrane-bound granule termed the "glycolytic body" or "G body." A yeast kinome screen identifies the yeast ortholog of AMP-activated protein kinase, Snf1p, as necessary for G-body formation. Many G-body components identified by proteomics are required for G-body integrity. Cells incapable of forming G bodies in hypoxia display abnormal cell division and produce inviable daughter cells. Conversely, cells with G bodies show increased glucose consumption and decreased levels of glycolytic intermediates. Importantly, G bodies form in human hepatocarcinoma cells in hypoxia. Together, our results suggest that G body formation is a conserved, adaptive response to increase glycolytic output during hypoxia or tumorigenesis.
Collapse
Affiliation(s)
- Meiyan Jin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Ting Han
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Yao Yao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Amelia F Alessi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mallory A Freeberg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Misuzu Baba
- Research Institute for Science and Technology, Kogakuin University, Hachioji, Tokyo 192-0015 Japan
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Molecular and Integrative Physiology and the Division of Nephrology in the Department of Internal Medicine
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA,corresponding authors: John K Kim, Ph.D., Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218-2683, . Daniel J Klionsky, Ph.D., Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216,
| | - John K Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,corresponding authors: John K Kim, Ph.D., Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218-2683, . Daniel J Klionsky, Ph.D., Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216,
| |
Collapse
|
16
|
Johnston WL, Krizus A, Ramani AK, Dunham W, Youn JY, Fraser AG, Gingras AC, Dennis JW. C. elegans SUP-46, an HNRNPM family RNA-binding protein that prevents paternally-mediated epigenetic sterility. BMC Biol 2017; 15:61. [PMID: 28716093 PMCID: PMC5513350 DOI: 10.1186/s12915-017-0398-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In addition to DNA, gametes contribute epigenetic information in the form of histones and non-coding RNA. Epigenetic programs often respond to stressful environmental conditions and provide a heritable history of ancestral stress that allows for adaptation and propagation of the species. In the nematode C. elegans, defective epigenetic transmission often manifests as progressive germline mortality. We previously isolated sup-46 in a screen for suppressors of the hexosamine pathway gene mutant, gna-2(qa705). In this study, we examine the role of SUP-46 in stress resistance and progressive germline mortality. RESULTS We identified SUP-46 as an HNRNPM family RNA-binding protein, and uncovered a highly novel role for SUP-46 in preventing paternally-mediated progressive germline mortality following mating. Proximity biotinylation profiling of human homologs (HNRNPM, MYEF2) identified proteins of ribonucleoprotein complexes previously shown to contain non-coding RNA. Like HNRNPM and MYEF2, SUP-46 was associated with multiple RNA granules, including stress granules, and also formed granules on active chromatin. SUP-46 depletion disrupted germ RNA granules and caused ectopic sperm, increased sperm transcripts, and chronic heat stress sensitivity. SUP-46 was also required for resistance to acute heat stress, and a conserved "MYEF2" motif was identified that was needed for stress resistance. CONCLUSIONS In mammals, non-coding RNA from the sperm of stressed males has been shown to recapitulate paternal stress phenotypes in the offspring. Our results suggest that HNRNPM family proteins enable stress resistance and paternally-mediated epigenetic transmission that may be conserved across species.
Collapse
Affiliation(s)
- Wendy L. Johnston
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Aldis Krizus
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Arun K. Ramani
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Wade Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Ji Young Youn
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Andrew G. Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- The Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - James W. Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
17
|
Nikolic J, Le Bars R, Lama Z, Scrima N, Lagaudrière-Gesbert C, Gaudin Y, Blondel D. Negri bodies are viral factories with properties of liquid organelles. Nat Commun 2017; 8:58. [PMID: 28680096 PMCID: PMC5498545 DOI: 10.1038/s41467-017-00102-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/31/2017] [Indexed: 11/23/2022] Open
Abstract
Replication of Mononegavirales occurs in viral factories which form inclusions in the host-cell cytoplasm. For rabies virus, those inclusions are called Negri bodies (NBs). We report that NBs have characteristics similar to those of liquid organelles: they are spherical, they fuse to form larger structures, and they disappear upon hypotonic shock. Their liquid phase is confirmed by FRAP experiments. Live-cell imaging indicates that viral nucleocapsids are ejected from NBs and transported along microtubules to form either new virions or secondary viral factories. Coexpression of rabies virus N and P proteins results in cytoplasmic inclusions recapitulating NBs properties. This minimal system reveals that an intrinsically disordered domain and the dimerization domain of P are essential for Negri bodies-like structures formation. We suggest that formation of liquid viral factories by phase separation is common among Mononegavirales and allows specific recruitment and concentration of viral proteins but also the escape to cellular antiviral response. Negative strand RNA viruses, such as rabies virus, induce formation of cytoplasmic inclusions for genome replication. Here, Nikolic et al. show that these so-called Negri bodies (NBs) have characteristics of liquid organelles and they identify the minimal protein domains required for NB formation.
Collapse
Affiliation(s)
- Jovan Nikolic
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Romain Le Bars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Zoé Lama
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
18
|
Alemasova EE, Lavrik OI. At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae 2017; 9:4-16. [PMID: 28740723 PMCID: PMC5508997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 11/26/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.
Collapse
Affiliation(s)
- E. E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
19
|
Russo J, Lee JE, López CM, Anderson J, Nguyen TMP, Heck AM, Wilusz J, Wilusz CJ. The CELF1 RNA-Binding Protein Regulates Decay of Signal Recognition Particle mRNAs and Limits Secretion in Mouse Myoblasts. PLoS One 2017; 12:e0170680. [PMID: 28129347 PMCID: PMC5271678 DOI: 10.1371/journal.pone.0170680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023] Open
Abstract
We previously identified several mRNAs encoding components of the secretory pathway, including signal recognition particle (SRP) subunit mRNAs, among transcripts associated with the RNA-binding protein CELF1. Through immunoprecipitation of RNAs crosslinked to CELF1 in myoblasts and in vitro binding assays using recombinant CELF1, we now provide evidence that CELF1 directly binds the mRNAs encoding each of the subunits of the SRP. Furthermore, we determined the half-lives of the Srp transcripts in control and CELF1 knockdown myoblasts. Our results indicate CELF1 is a destabilizer of at least five of the six Srp transcripts and that the relative abundance of the SRP proteins is out of balance when CELF1 is depleted. CELF1 knockdown myoblasts exhibit altered secretion of a luciferase reporter protein and are impaired in their ability to migrate and close a wound, consistent with a defect in the secreted extracellular matrix. Importantly, similar defects in wound healing are observed when SRP subunit imbalance is induced by over-expression of SRP68. Our studies support the existence of an RNA regulon containing Srp mRNAs that is controlled by CELF1. One implication is that altered function of CELF1 in myotonic dystrophy may contribute to changes in the extracellular matrix of affected muscle through defects in secretion.
Collapse
Affiliation(s)
- Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jerome E. Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carolina M. López
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - John Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thuy-mi P. Nguyen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam M. Heck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
20
|
Uversky VN. Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 2016; 44:18-30. [PMID: 27838525 DOI: 10.1016/j.sbi.2016.10.015] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/08/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
Although the cellular interior is crowded with various biological macromolecules, the distribution of these macromolecules is highly inhomogeneous. Eukaryotic cells contain numerous proteinaceous membrane-less organelles (PMLOs), which are condensed liquid droplets formed as a result of the reversible and highly controlled liquid-liquid phase transitions. The interior of these cellular bodies represents an overcrowded milieu, since their protein concentrations are noticeably higher than those of the crowded cytoplasm and nucleoplasm. PMLOs are different in size, shape, and composition, and almost invariantly contain intrinsically disordered proteins (e.g., eIF4B and TDP43 in stress granules, TTP in P-bodies, RDE-12 in nuage, RNG105 in RNA granules, centrins in centrosomes, NOPP140 in nucleoli, SRSF4 in nuclear speckles, Saf-B in nuclear stress bodies, NOLC1 in Cajal bodies, CBP in PML nuclear bodies, SOX9 in paraspeckles, KSRP in perinucleolar compartment, and hnRNPG and Sam68 in Sam68 nuclear body, to name a few), which indicates that the formation of these phase-separated droplets is crucially dependent on intrinsic disorder. The goal of this review is to show the roles of intrinsic disorder in the magic behind biological liquid-liquid phase transitions that lead to the formation of PMLOs.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|