1
|
Ollonen J, Khannoon ER, Macrì S, Vergilov V, Kuurne J, Saarikivi J, Soukainen A, Aalto IM, Werneburg I, Diaz RE, Di-Poï N. Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration. Nat Ecol Evol 2024; 8:536-551. [PMID: 38200368 DOI: 10.1038/s41559-023-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson's organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.
Collapse
Affiliation(s)
- Joni Ollonen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eraqi R Khannoon
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vladislav Vergilov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jaakko Kuurne
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jarmo Saarikivi
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arttu Soukainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ida-Maria Aalto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Pan D, Wang Z, Chen Y, Cao J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun Biol 2023; 6:1054. [PMID: 37853054 PMCID: PMC10584931 DOI: 10.1038/s42003-023-05432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.
Collapse
Affiliation(s)
- Deng Pan
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China.
| |
Collapse
|
3
|
Luo H, Luo S, Fang W, Lin Q, Chen X, Zhou X. Genomic insight into the nocturnal adaptation of the black-crowned night heron (Nycticorax nycticorax). BMC Genomics 2022; 23:683. [PMID: 36192687 PMCID: PMC9531477 DOI: 10.1186/s12864-022-08904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The black-crowned night heron (Nycticorax nycticorax) is an ardeid bird successfully adapted to the nocturnal environment. Previous studies had indicated that the eyes of the night herons have evolved several specialized morphological traits favoring nocturnal vision. However, the molecular mechanisms of the nocturnal vision adaptation of night herons remained inattentions. In this study, the whole genome of N. nycticorax was sequenced and comparative analyses were performed on the vision-related and olfactory receptor (OR) genes to understand the molecular mechanisms of the visual and olfactory adaptation of night herons. RESULTS The results indicated that a number of vision genes were under positive or relaxed selection in N. nycticorax, whereas a number of other vision genes were under relaxed or intensified selection in the boat-billed heron (Cochlearius cochlearius), which suggested that the two species adapt to nocturnality with different genetic mechanisms. The different selections acting on vision genes are probably associated with the enlargement of eye size and the enhancement of visual sensitivity in night herons. The analyses on olfactory receptor (OR) genes indicated that the total number of OR genes in the genomes of N. nycticorax and C. cochlearius were about half those in the little egret (Egretta garzetta), whereas the diversity of their OR genes was not remarkably different. Additionally, the number of expressed OR genes in the transcriptomes of N. nycticorax was also fewer than that in E. garzetta. These results suggest a reduced olfactory capability in night herons compared with E. garzetta. CONCLUSIONS Our results provided evidence that several vision genes of the night herons were subjected to different natural selections, which can contribute to a better understanding of the genetic mechanisms of visual adaptions of the night heron. In addition, the finding of the reduced number of total and expressed OR genes in night herons may reflect a trade-off between olfaction and vision.
Collapse
Affiliation(s)
- Haoran Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Site Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
4
|
Kurhaluk N, Tkachenko H, Kamiński P. Biomarkers of oxidative stress, metabolic processes, and lysosomal activity in the muscle tissue of the great tit (Parus major) living in sodium industry and agricultural areas in Inowrocław region (central part of northern Poland). ENVIRONMENTAL RESEARCH 2022; 210:112907. [PMID: 35150715 DOI: 10.1016/j.envres.2022.112907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
An region of ecological hazard (EHR) is an area where, as a result of intensive human economic activity, degradation of components of the natural environment has taken place, leading to the deterioration of the ecological balance. EHR management is a globalised ever-increasing challenge. To eliminate the hazardous effect of these pollutants, research has been accelerated worldwide. The current study analyzed the specific biomarkers of the lipid and protein oxidation, total antioxidative status, activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase and peroxidase), lysosomal enzymes (alanyl aminopeptidase, leucyl aminopeptidase, acid phosphatase), and biomarkers of aerobic and anaerobic metabolic pathways (activities of alanine and aspartate aminotransferases, succinate dehydrogenase, lactate dehydrogenase, lactate and pyruvate levels) in skeletal muscle tissue of wild great tit nestlings in environments with different levels of anthropogenic pressure such as sodium industry and agriculture in the central part of northern Poland (Inowrocław EHR). Control samples were collected from Tuchola Forest and Borkowo village, where no direct sources of contamination were found. The relevance of the study was to assess the changes in lysosomal functioning caused by pollution-induced oxidative stress that may indicate multidirectional adaptative mechanisms of metabolic processes occurring in the wild birds to compensate for the negative effects of contamination. It was shown that the initiation of oxidative stress caused by anthropogenic pollution shifted the balance of the normal functioning of lysosomal enzymes towards their increased activity. A general tendency towards an increase in the intensity of lipid peroxidation processes with an increasing level of oxidatively modified proteins (aldehydic and ketonic derivatives) and a simultaneous reduction in the TAS was observed in the muscle tissue of great tits living in the anthropogenically modified areas. The intensity of lipid peroxidation and protein damage caused changes and reorganization of the energy-related metabolic pathways in the muscle tissue of wild great tits living in the sodium industry and agricultural areas of the EHR.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 1b, 76-200, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 1b, 76-200, Słupsk, Poland
| | - Piotr Kamiński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Department of Medical Biology and Biochemistry, Department of Ecology and Environmental Protection, M. Skłodowska-Curie Str. 9, PL, 85094, Bydgoszcz, Poland; University of Zielona Góra, Faculty of Biological Sciences, Department of Biotechnology, Prof. Z. Szafran Str. 1, PL, 65516, Zielona Góra, Poland
| |
Collapse
|
5
|
Chen YC, Kuo HC, Lo WS, Hung CM. Avian phenotypic convergence is subject to low genetic constraints based on genomic evidence. BMC Evol Biol 2020; 20:147. [PMID: 33160317 PMCID: PMC7648321 DOI: 10.1186/s12862-020-01711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Phenotypic convergence between distinct species provides an opportunity to examine the predictability of genetic evolution. Unrelated species sharing genetic underpinnings for phenotypic convergence suggests strong genetic constraints, and thus high predictability of evolution. However, there is no clear big picture of the genomic constraints on convergent evolution. Genome-based phylogenies have confirmed many cases of phenotypic convergence in birds, making them a good system for examining genetic constraints in phenotypic convergence. In this study, we used hierarchical genomic approaches to estimate genetic constraints in three convergent avian traits: nocturnality, raptorial behavior and foot-propelled diving. RESULTS Phylogeny-based hypothesis tests and positive selection tests were applied to compare 16 avian genomes, representing 14 orders, and identify genes with strong convergence signals. We found 43 adaptively convergent genes (ACGs) associated with the three phenotypic convergence cases and assessed genetic constraints in all three cases, from (amino acid) site mutations to genetic pathways. We found that the avian orders shared few site mutations in the ACGs that contributed to the convergent phenotypes, and that these ACGs were not enriched in any genetic pathways. In addition, different pairs of orders with convergent foot-propelled diving or raptorial behaviors shared few ACGs. We also found that closely related orders that shared foot-propelled diving behavior did not share more ACGs than did distinct orders, suggesting that convergence among these orders could not be explained by their initial genomic backgrounds. CONCLUSIONS Our analyses of three avian convergence events suggest low constraints for phenotypic convergence across multiple genetic levels, implying that genetic evolution is unpredictable at the phylogenetic level of avian order. Ours is one of first studies to apply hierarchical genomic examination to multiple avian convergent cases to assess the genetic constraints in life history trait evolution.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Sui Lo
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Espíndola-Hernández P, Mueller JC, Carrete M, Boerno S, Kempenaers B. Genomic Evidence for Sensorial Adaptations to a Nocturnal Predatory Lifestyle in Owls. Genome Biol Evol 2020; 12:1895-1908. [PMID: 32770228 PMCID: PMC7566403 DOI: 10.1093/gbe/evaa166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Owls (Strigiformes) evolved specific adaptations to their nocturnal predatory lifestyle, such as asymmetrical ears, a facial disk, and a feather structure allowing silent flight. Owls also share some traits with diurnal raptors and other nocturnal birds, such as cryptic plumage patterns, reversed sexual size dimorphism, and acute vision and hearing. The genetic basis of some of these adaptations to a nocturnal predatory lifestyle has been studied by candidate gene approaches but rarely with genome-wide scans. Here, we used a genome-wide comparative analysis to test for selection in the early history of the owls. We estimated the substitution rates in the coding regions of 20 bird genomes, including 11 owls of which five were newly sequenced. Then, we tested for functional overrepresentation across the genes that showed signals of selection. In the ancestral branch of the owls, we found traces of positive selection in the evolution of genes functionally related to visual perception, especially to phototransduction, and to chromosome packaging. Several genes that have been previously linked to acoustic perception, circadian rhythm, and feather structure also showed signals of an accelerated evolution in the origin of the owls. We discuss the functions of the genes under positive selection and their putative association with the adaptation to the nocturnal predatory lifestyle of the owls.
Collapse
Affiliation(s)
- Pamela Espíndola-Hernández
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain
| | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
7
|
|
8
|
Wu Y. Widespread nocturnality of living birds stemming from their common ancestor. BMC Evol Biol 2019; 19:189. [PMID: 31619159 PMCID: PMC6794809 DOI: 10.1186/s12862-019-1508-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/05/2019] [Indexed: 12/01/2022] Open
Abstract
Background Many living birds exhibit some nocturnal activity, but the genetic basis and evolutionary origins of their nocturnality remain unknown. Results Here, we used a molecular phyloecological approach to analyze the adaptive evolution of 33 phototransduction genes in diverse bird lineages. Our results suggest that functional enhancement of two night-vision genes, namely, GRK1 and SLC24A1, underlies the nocturnal adaption of living birds. Further analyses showed that the diel activity patterns of birds have remained relatively unchanged since their common ancestor, suggesting that the widespread nocturnal activity of many living birds may largely stem from their common ancestor rather than independent evolution. Despite this evolutionary conservation of diel activity patterns in birds, photoresponse recovery genes were found to be frequently subjected to positive selection in diverse bird lineages, suggesting that birds generally have evolved an increased capacity for motion detection. Moreover, we detected positive selection on both dim-light vision genes and bright-light vision genes in the class Aves, suggesting divergent evolution of the vision of birds from that of reptiles and that different bird lineages have evolved certain visual adaptions to their specific light conditions. Conclusions This study suggests that the widespread nocturnality of extant birds has a deep evolutionary origin tracing back to their common ancestor.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China. .,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
| |
Collapse
|
9
|
Cho YS, Jun JH, Kim JA, Kim HM, Chung O, Kang SG, Park JY, Kim HJ, Kim S, Kim HJ, Jang JH, Na KJ, Kim J, Park SG, Lee HY, Manica A, Mindell DP, Fuchs J, Edwards JS, Weber JA, Witt CC, Yeo JH, Kim S, Bhak J. Raptor genomes reveal evolutionary signatures of predatory and nocturnal lifestyles. Genome Biol 2019; 20:181. [PMID: 31464627 PMCID: PMC6714440 DOI: 10.1186/s13059-019-1793-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 01/11/2023] Open
Abstract
Background Birds of prey (raptors) are dominant apex predators in terrestrial communities, with hawks (Accipitriformes) and falcons (Falconiformes) hunting by day and owls (Strigiformes) hunting by night. Results Here, we report new genomes and transcriptomes for 20 species of birds, including 16 species of birds of prey, and high-quality reference genomes for the Eurasian eagle-owl (Bubo bubo), oriental scops owl (Otus sunia), eastern buzzard (Buteo japonicus), and common kestrel (Falco tinnunculus). Our extensive genomic analysis and comparisons with non-raptor genomes identify common molecular signatures that underpin anatomical structure and sensory, muscle, circulatory, and respiratory systems related to a predatory lifestyle. Compared with diurnal birds, owls exhibit striking adaptations to the nocturnal environment, including functional trade-offs in the sensory systems, such as loss of color vision genes and selection for enhancement of nocturnal vision and other sensory systems that are convergent with other nocturnal avian orders. Additionally, we find that a suite of genes associated with vision and circadian rhythm are differentially expressed in blood tissue between nocturnal and diurnal raptors, possibly indicating adaptive expression change during the transition to nocturnality. Conclusions Overall, raptor genomes show genomic signatures associated with the origin and maintenance of several specialized physiological and morphological features essential to be apex predators. Electronic supplementary material The online version of this article (10.1186/s13059-019-1793-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Jung A Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hak-Min Kim
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | | | - Seung-Gu Kang
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jin-Young Park
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hwa-Jung Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Sunghyun Kim
- Strategic Planning Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hee-Jong Kim
- Chungnam Wild Animal Rescue Center, Kongju National University, Yesan, Republic of Korea
| | - Jin-Ho Jang
- Chungnam Wild Animal Rescue Center, Kongju National University, Yesan, Republic of Korea
| | - Ki-Jeong Na
- College of veterinary medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jeongho Kim
- Medical care team, Cheongju Zoo, Cheongju, Republic of Korea
| | - Seung Gu Park
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | | | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David P Mindell
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Jérôme Fuchs
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Jeremy S Edwards
- Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Jessica A Weber
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Joo-Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea.
| | - Jong Bhak
- Clinomics Inc, Ulsan, Republic of Korea. .,Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea. .,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|