1
|
Kusochek PA, Smitienko OA, Bochenkova AV. Mode-Specific Photoresponse of Retinal Protonated Schiff Base Isomers in the Reversible Photochromic Reactions of Microbial and Animal Rhodopsins. J Phys Chem B 2024; 128:12471-12482. [PMID: 39641505 DOI: 10.1021/acs.jpcb.4c06832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The primary photoisomerization reactions of the all-trans to 13-cis and 11-cis to all-trans retinal protonated Schiff base (RPSB) in microbial and animal rhodopsins, respectively, occur on a subpicosecond time scale with high quantum yields. At the same time, the isolated RPSB exhibits slower excited-state decay, in particular, in its all-trans form, and hence the interaction with the protein environment is capable of changing the time scale as well as the specificity of the reaction. Here, by using the high-level QM/MM calculations, we provide a comparative study of the primary photoresponse of cis and trans RPSB isomers in both the initial forms and first photoproducts of microbial Krokinobacter eikastus rhodopsin 2 (KR2) and Halobacterium salinarum bacteriorhodopsin (BR), and animal Bos taurus visual rhodopsin (Rho). By simulating photoabsorption band shapes of RPSB inside the proteins, we show that its photoresponse is highly mode-specific for the forward reactions, resulting in excitation of those vibrational modes that facilitate particular double-bond isomerization. The reverse reaction shows specificity only for 13-cis isomers in microbial rhodopsins, whereas the specificity is lost for all-trans RPSB in visual rhodopsin. This indicates evolutionary highly tuned 11-cis chromophore-protein interactions in visual rhodopsin. We also highlight the differences in the photoresponse of RPSB in two microbial rhodopsins and discuss the implications to their excited-state dynamics.
Collapse
Affiliation(s)
- Pavel A Kusochek
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia
| | - Anastasia V Bochenkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
2
|
Fujisawa T, Kinoue K, Seike R, Kikukawa T, Unno M. Configurational Changes of Retinal Schiff Base during Membrane Na + Transport by a Sodium Pumping Rhodopsin. J Phys Chem Lett 2024; 15:1993-1998. [PMID: 38349321 DOI: 10.1021/acs.jpclett.3c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microbial rhodopsins are photoreceptors containing the retinal Schiff base chromophore and are ubiquitous among microorganisms. The Schiff base configuration of the chromophore, 15-anti (C═N trans) or 15-syn (C═N cis), is structurally important for their functions, such as membrane ion transport, because this configuration dictates the orientation of the positively charged NH group that interacts with substrate ions. The 15-anti/syn configuration is thus essential for elucidating the ion-transport mechanisms in microbial rhodopsins. Here, we identified the Schiff base configuration during the photoreaction of a sodium pumping rhodopsin from Indibacter alkaliphilus using Raman spectroscopy. We found that the unique configurational change from the 13-cis, 15-anti to all-trans, 15-syn form occurs between the photointermediates termed O1 and O2, which accomplish the Na+ uptake and release, respectively. This isomerization is considered to give rise to the highly irreversible O1 → O2 step that is crucial for unidirectional Na+ transport.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kouta Kinoue
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryouhei Seike
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
3
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Singh M, Ito S, Hososhima S, Abe-Yoshizumi R, Tsunoda SP, Inoue K, Kandori H. Light-Driven Chloride and Sulfate Pump with Two Different Transport Modes. J Phys Chem B 2023; 127:7123-7134. [PMID: 37552856 DOI: 10.1021/acs.jpcb.3c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ion pumps are membrane proteins that actively translocate ions by using energy. All known pumps bind ions in the resting state, and external energy allows ion transport through protein structural changes. The light-driven sodium-ion pump Krokinobacter eikastus rhodopsin 2 (KR2) is an exceptional case in which ion binding follows the energy input. In this study, we report another case of this unusual transport mode. The NTQ rhodopsin from Alteribacter aurantiacus (AaClR) is a natural light-driven chloride pump, in which the chloride ion binds to the resting state. AaClR is also able to pump sulfate ions, though the pump efficiency is much lower for sulfate ions than for chloride ions. Detailed spectroscopic analysis revealed no binding of the sulfate ion to the resting state of AaClR, indicating that binding of the substrate (sulfate ion) to the resting state is not necessary for active transport. This property of the AaClR sulfate pump is similar to that of the KR2 sodium pump. Photocycle dynamics of the AaClR sulfate pump resemble a non-functional cycle in the absence of anions. Despite this, flash photolysis and difference Fourier transform infrared spectroscopy suggest transient binding of the sulfate ion to AaClR. The molecular mechanism of this unusual active transport by AaClR is discussed.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| |
Collapse
|
5
|
Huang Q, Zhu W, Gao X, Liu X, Zhang Z, Xing B. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Deliv Rev 2023; 195:114763. [PMID: 36841331 DOI: 10.1016/j.addr.2023.114763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ion channels are transmembrane proteins ubiquitously expressed in all cells that control various ions (e.g. Na+, K+, Ca2+ and Cl- etc) crossing cellular plasma membrane, which play critical roles in physiological processes including regulating signal transduction, cell proliferation as well as excitatory cell excitation and conduction. Abnormal ion channel function is usually associated with dysfunctions and many diseases, such as neurodegenerative disorders, ophthalmic diseases, pulmonary diseases and even cancers. The precise regulation of ion channels not only helps to decipher physiological and pathological processes, but also is expected to become cutting-edge means for disease treatment. Recently, nanoparticles-mediated ion channel manipulation emerges as a highly promising way to meet the increasing requirements with respect to their simple, efficient, precise, spatiotemporally controllable and non-invasive regulation in biomedicine and other research frontiers. Thanks the advantages of their unique properties, nanoparticles can not only directly block the pore sites or kinetics of ion channels through their tiny size effect, and perturb active voltage-gated ion channel by their charged surface, but they can also act as antennas to conduct or enhance external physical stimuli to achieve spatiotemporal, precise and efficient regulation of various ion channel activities (e.g. light-, mechanical-, and temperature-gated ion channels etc). So far, nanoparticles-mediated ion channel regulation has shown potential prospects in many biomedical fields at the interfaces of neuro- and cardiovascular modulation, physiological function regeneration and tumor therapy et al. Towards such important fields, in this typical review, we specifically outline the latest studies of different types of ion channels and their activities relevant to the diseases. In addition, the different types of stimulation responsive nanoparticles, their interaction modes and targeting strategies towards the plasma membrane ion channels will be systematically summarized. More importantly, the ion channel regulatory methods mediated by functional nanoparticles and their bioapplications associated with physiological modulation and therapeutic development will be discussed. Last but not least, current challenges and future perspectives in this field will be covered as well.
Collapse
Affiliation(s)
- Qiwen Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyin Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Liu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
6
|
Asido M, Wachtveitl J. Photochemistry of the Light-Driven Sodium Pump Krokinobacter eikastus Rhodopsin 2 and Its Implications on Microbial Rhodopsin Research: Retrospective and Perspective. J Phys Chem B 2023; 127:3766-3773. [PMID: 36919947 DOI: 10.1021/acs.jpcb.2c08933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The discovery of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) in 2013 has changed the paradigm that cation transport in microbial rhodopsins is restricted to the translocation of protons. Even though this finding is already remarkable by itself, it also reignited more general discussions about the functional mechanism of ion transport. The unique composition of the retinal binding pocket in KR2 with a tight interaction between the retinal Schiff base and its respective counterion D116 also has interesting implications on the photochemical pathway of the chromophore. Here, we discuss the most recent advances in our understanding of the KR2 functionality from the primary event of photon absorption by all-trans retinal up to the actual protein response in the later phases of the photocycle, mainly from the point of view of optical spectroscopy. In this context, we furthermore highlight some of the ongoing debates on the photochemistry of microbial rhodopsins and give some perspectives for promising future directions in this field of research.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Fujisawa T, Kinoue K, Seike R, Kikukawa T, Unno M. Reisomerization of retinal represents a molecular switch mediating Na + uptake and release by a bacterial sodium-pumping rhodopsin. J Biol Chem 2022; 298:102366. [PMID: 35963435 PMCID: PMC9483557 DOI: 10.1016/j.jbc.2022.102366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Sodium-pumping rhodopsins (NaRs) are membrane transporters that utilize light energy to pump Na+ across the cellular membrane. Within the NaRs, the retinal Schiff base chromophore absorbs light, and a photochemically induced transient state, referred to as the “O intermediate”, performs both the uptake and release of Na+. However, the structure of the O intermediate remains unclear. Here, we used time-resolved cryo-Raman spectroscopy under preresonance conditions to study the structure of the retinal chromophore in the O intermediate of an NaR from the bacterium Indibacter alkaliphilus. We observed two O intermediates, termed O1 and O2, having distinct chromophore structures. We show O1 displays a distorted 13-cis chromophore, while O2 contains a distorted all-trans structure. This finding indicated that the uptake and release of Na+ are achieved not by a single O intermediate but by two sequential O intermediates that are toggled via isomerization of the retinal chromophore. These results provide crucial structural insight into the unidirectional Na+ transport mediated by the chromophore-binding pocket of NaRs.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Kouta Kinoue
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryouhei Seike
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sappo-ro 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
8
|
Nakamizo Y, Fujisawa T, Kikukawa T, Okamura A, Baba H, Unno M. Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na + binding for active Na + transport. Phys Chem Chem Phys 2021; 23:2072-2079. [PMID: 33433533 DOI: 10.1039/d0cp05652a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We carried out the low-temperature Raman measurement of a sodium pump rhodopsin from Indibacter alkaliphilus (IaNaR) and examined the primary structural change for the light-driven Na+ pump. We observed that photoexcitation of IaNaR produced the distorted 13-cis retinal chromophore in the presence of Na+, while the structural distortion was significantly relaxed in the absence of Na+. This structural difference of the chromophore with/without Na+ was attributed to the Na+ binding to the protein, which alters the active site. Using the spectral sensitivity to the ion binding, we found that IaNaR had a second Na+ binding site in addition to the one already specified on the extracellular surface. To date, the Na+ binding has not been considered as a prerequisite for Na+ transport. However, this study provides insight that the protein structural change induced by the ion binding involved the formation of an R108-D250 salt bridge, which has critical importance in the active transport of Na+.
Collapse
Affiliation(s)
- Yushi Nakamizo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
10
|
Tomida S, Ito S, Mato T, Furutani Y, Inoue K, Kandori H. Infrared spectroscopic analysis on structural changes around the protonated Schiff base upon retinal isomerization in light-driven sodium pump KR2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148190. [DOI: 10.1016/j.bbabio.2020.148190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/30/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|
11
|
Harris A, Lazaratos M, Siemers M, Watt E, Hoang A, Tomida S, Schubert L, Saita M, Heberle J, Furutani Y, Kandori H, Bondar AN, Brown LS. Mechanism of Inward Proton Transport in an Antarctic Microbial Rhodopsin. J Phys Chem B 2020; 124:4851-4872. [DOI: 10.1021/acs.jpcb.0c02767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Michalis Lazaratos
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ethan Watt
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Anh Hoang
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Luiz Schubert
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Mattia Saita
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
12
|
Natronomonas salsuginis sp. nov., a New Inhabitant of a Marine Solar Saltern. Microorganisms 2020; 8:microorganisms8040605. [PMID: 32326357 PMCID: PMC7232251 DOI: 10.3390/microorganisms8040605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022] Open
Abstract
A halophilic archaeon, strain F20-122T, was isolated from a marine saltern of Isla Bacuta (Huelva, Spain). Cells were Gram-stain-negative, aerobic, and coccoid in morphology. It grew at 25–50 °C (optimum 37 °C), pH 6.5–9.0 (optimum pH 8.0), and 10–30% (w/v) total salts (optimum 25% salts). The phylogenetic analyses based on the 16S rRNA and rpoB’ genes showed its affiliation with the genus Natronomonas and suggested its placement as a new species within this genus. The in silico DNA–DNA hybridization (DDH) and average nucleotide identity (ANI) analyses of this strain against closely related species supported its placement in a new taxon. The DNA G + C content of this isolate was 63.0 mol%. The polar lipids of strain F20-122T were phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol (PG), and phosphatidylglycerol sulfate (PGS). Traces of biphosphatidylglycerol (BPG) and other minor phospholipids and unidentified glycolipids were also present. Based on the phylogenetic, genomic, phenotypic, and chemotaxonomic characterization, we propose strain F20-122T (= CCM 8891T = CECT 9564T = JCM 33320T) as the type strain of a new species within the genus Natronomonas, with the name Natronomonas salsuginis sp. nov. Rhodopsin-like sequence analysis of strain F20-122T revealed the presence of haloarchaeal proton pumps, suggesting a light-mediated ATP synthesis for this strain and a maximum wavelength absorption in the green spectrum.
Collapse
|
13
|
Gleason FH, Larkum AW, Raven JA, Manohar CS, Lilje O. Ecological implications of recently discovered and poorly studied sources of energy for the growth of true fungi especially in extreme environments. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Nishimura N, Mizuno M, Kandori H, Mizutani Y. Distortion and a Strong Hydrogen Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2. J Phys Chem B 2019; 123:3430-3440. [DOI: 10.1021/acs.jpcb.9b00928] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nao Nishimura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
15
|
Miyahara T, Nakatsuji H. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. J Phys Chem A 2019; 123:1766-1784. [DOI: 10.1021/acs.jpca.8b10203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomoo Miyahara
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan
| | - Hiroshi Nakatsuji
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan
| |
Collapse
|
16
|
Mathews J, Levin M. The body electric 2.0: recent advances in developmental bioelectricity for regenerative and synthetic bioengineering. Curr Opin Biotechnol 2018; 52:134-144. [PMID: 29684787 PMCID: PMC10464502 DOI: 10.1016/j.copbio.2018.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022]
Abstract
Breakthroughs in biomedicine and synthetic bioengineering require predictive, rational control over anatomical structure and function. Recent successes in manipulating cellular and molecular hardware have not been matched by progress in understanding the patterning software implemented during embryogenesis and regeneration. A fundamental capability gap is driving desired changes in growth and form to address birth defects and traumatic injury. Here we review new tools, results, and conceptual advances in an exciting emerging field: endogenous non-neural bioelectric signaling, which enables cellular collectives to make global decisions and implement large-scale pattern homeostasis. Spatially distributed electric circuits regulate gene expression, organ morphogenesis, and body-wide axial patterning. Developmental bioelectricity facilitates the interface to organ-level modular control points that direct patterning in vivo. Cracking the bioelectric code will enable transformative progress in bioengineering and regenerative medicine.
Collapse
Affiliation(s)
- Juanita Mathews
- Biology Department, and Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Michael Levin
- Biology Department, and Allen Discovery Center at Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
17
|
Tomida S, Ito S, Inoue K, Kandori H. Hydrogen-bonding network at the cytoplasmic region of a light-driven sodium pump rhodopsin KR2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:684-691. [PMID: 29852143 DOI: 10.1016/j.bbabio.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Abstract
Light-driven sodium-pumping rhodopsins are able to actively transport sodium ions. Structure/function studies of Krokinobacter eikastus rhodopsin 2 (KR2) identified N61 and G263 at the cytoplasmic surface constituting the "Ion-selectivity filter" for sodium ions, while retinal Schiff base acts as the light "Switch and Gate" for transport of sodium ions. Q123 is located between the two regions, and plays an important role for the pump function, which was implicated by functional, spectroscopic, X-ray crystallographic and computational studies. According to the atomic structure of KR2, Q123 is involved in the hydrogen-bonding network at the cytoplasmic region, together with S64, protein-bound waters, and peptide carbonyl of K255 bound to the chromophore. To gain the detailed structural information around Q123, here we compared light-induced difference Fourier-transform infrared (FTIR) spectra at 77 K between the wild-type (WT) and mutant proteins of KR2, such as Q123A, Q123V, and S64A. The obtained spectra were very similar between WT and these mutants, whereas the observed mutation effects enabled us to identify vibrations of the hydrogen-bonding network at the Q123 and S64 region. This is unique for KR2, not for the corresponding mutations in a light-driven proton-pump bacteriorhodopsin (BR). Hydrogen-bonding alteration is absent for the mutants of KR2, suggesting that proper inter-helical connectivity of helices B, C, and G is important for protein structural changes for sodium-pump function, which is controlled by the region around Q123.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Frontier Research Institute for Material Science, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
18
|
Shigeta A, Ito S, Kaneko R, Tomida S, Inoue K, Kandori H, Kawamura I. Long-distance perturbation on Schiff base-counterion interactions by His30 and the extracellular Na +-binding site in Krokinobacter rhodopsin 2. Phys Chem Chem Phys 2018. [PMID: 29537054 DOI: 10.1039/c8cp00626a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Krokinobacter rhodopsin 2 (KR2), a light-driven Na+ pump, is a dual-functional protein, pumping protons in the absence of Na+ when K+ or larger alkali metal ions are present. A specific mutation in helix A near the extracellular Na+ binding site, H30A, eliminates its proton pumping ability. We induced structural changes in H30A by altering the alkali metal ion bound at the extracellular binding site, and observed a strong electrostatic interaction between the Schiff base and counterion and torsion around the Schiff base as revealed by solid-state nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies. The strong interaction when His30 was absent and no ion bound at the extracellular binding site disabled retinal reisomerization, as was shown with flash-photolysis, forming a small amount of only a K-like intermediate. This revealed why H30A lacks the proton pumping function. Long-distance perturbation of the binding site and Schiff base revealed that a non-transported ion binding at the extracellular site is essential for pumping.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kandori H, Inoue K, Tsunoda SP. Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00548] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi P. Tsunoda
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
20
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|