1
|
Liman GLS, Lennon CW, Mandley JL, Galyon AM, Zatopek KM, Gardner AF, Santangelo TJ. Intein splicing efficiency and RadA levels can control the mode of archaeal DNA replication. SCIENCE ADVANCES 2024; 10:eadp4995. [PMID: 39292776 PMCID: PMC11409957 DOI: 10.1126/sciadv.adp4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Inteins (intervening proteins), mobile genetic elements removed through protein splicing, often interrupt proteins required for DNA replication, recombination, and repair. An abundance of in vitro evidence implies that inteins may act as regulatory elements, whereby reduced splicing inhibits production of the mature protein lacking the intein, but in vivo evidence of regulatory intein excision in the native host is absent. The model archaeon Thermococcus kodakarensis encodes 15 inteins, and we establish the impacts of intein splicing inhibition on host physiology and replication in vivo. We report that a decrease in intein splicing efficiency of the recombinase RadA, a Rad51/RecA homolog, has widespread physiological consequences, including a general growth defect, increased sensitivity to DNA damage, and a switch in the mode of DNA replication from recombination-dependent replication toward origin-dependent replication.
Collapse
Affiliation(s)
- Geraldy L. S. Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Jaylin L. Mandley
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Alina M. Galyon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Schrecker M, Castaneda JC, Devbhandari S, Kumar C, Remus D, Hite RK. Multistep loading of a DNA sliding clamp onto DNA by replication factor C. eLife 2022; 11:e78253. [PMID: 35939393 PMCID: PMC9359705 DOI: 10.7554/elife.78253] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3' end (3' ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3' ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.
Collapse
Affiliation(s)
- Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Juan C Castaneda
- Weill Cornell Medicine Graduate School, Weill Cornell MedicineNew YorkUnited States
- Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Sujan Devbhandari
- Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
3
|
Zheng F, Georgescu RE, Yao NY, Li H, O'Donnell ME. Cryo-EM structures reveal that RFC recognizes both the 3'- and 5'-DNA ends to load PCNA onto gaps for DNA repair. eLife 2022; 11:77469. [PMID: 35829698 PMCID: PMC9293004 DOI: 10.7554/elife.77469] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
RFC uses ATP to assemble PCNA onto primed sites for replicative DNA polymerases d and e. The RFC pentamer forms a central chamber that binds 3' ss/ds DNA junctions to load PCNA onto DNA during replication. We show here five structures that identify a 2nd DNA binding site in RFC that binds a 5' duplex. This 5' DNA site is located between the N-terminal BRCT domain and AAA+ module of the large Rfc1 subunit. Our structures reveal ideal binding to a 7-nt gap, which includes 2 bp unwound by the clamp loader. Biochemical studies show enhanced binding to 5 and 10 nt gaps, consistent with the structural results. Because both 3' and 5' ends are present at a ssDNA gap, we propose that the 5' site facilitates RFC's PCNA loading activity at a DNA damage-induced gap to recruit gap-filling polymerases. These findings are consistent with genetic studies showing that base excision repair of gaps greater than 1 base requires PCNA and involves the 5' DNA binding domain of Rfc1. We further observe that a 5' end facilitates PCNA loading at an RPA coated 30-nt gap, suggesting a potential role of the RFC 5'-DNA site in lagging strand DNA synthesis.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, United States
| | - Roxana E Georgescu
- DNA Replication Laboratory, Rockefeller University, New York, United States
| | - Nina Y Yao
- DNA Replication Laboratory, Rockefeller University, New York, United States
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, United States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller University, New York, United States
| |
Collapse
|
4
|
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J Fungi (Basel) 2022; 8:jof8060621. [PMID: 35736104 PMCID: PMC9225081 DOI: 10.3390/jof8060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.
Collapse
|
5
|
Dahl JM, Thomas N, Tracy MA, Hearn BL, Perera L, Kennedy SR, Herr AJ, Kunkel TA. Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ϵ. Nucleic Acids Res 2022; 50:962-974. [PMID: 35037018 DOI: 10.1093/nar/gkab1255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/21/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022] Open
Abstract
We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator. Both retain the ability to excise a nucleotide from double-stranded DNA, but with impaired activity. pol2-Y473F degrades DNA poorly, while pol2-N378K degrades single-stranded DNA at an elevated rate relative to double-stranded DNA. These data suggest that pol2-Y473F reduces the capacity of the enzyme to perform catalysis in the exonuclease active site, while pol2-N378K impairs partitioning to the exonuclease active site. Relative to wild-type Pol ϵ, both variants decrease the dNTP concentration required to elicit a switch between proofreading and polymerization by more than an order of magnitude. While neither mutation appears to alter the sequence specificity of polymerization, the N378K mutation stimulates polymerase activity, increasing the probability of incorporation and extension of a mismatch. Considered together, these data indicate that impairing the primer strand transfer pathway required for proofreading increases the probability of common mutations by Pol ϵ, elucidating the association of homologous mutations in human DNA polymerase ϵ with cancer.
Collapse
Affiliation(s)
- Joseph M Dahl
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Natalie Thomas
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Maxwell A Tracy
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Brady L Hearn
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Lalith Perera
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Alan J Herr
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Thomas A Kunkel
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Zhou ZX, Lujan SA, Burkholder AB, St. Charles J, Dahl J, Farrell CE, Williams JS, Kunkel TA. How asymmetric DNA replication achieves symmetrical fidelity. Nat Struct Mol Biol 2021; 28:1020-1028. [PMID: 34887558 PMCID: PMC8815454 DOI: 10.1038/s41594-021-00691-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Accurate DNA replication of an undamaged template depends on polymerase selectivity for matched nucleotides, exonucleolytic proofreading of mismatches, and removal of remaining mismatches via DNA mismatch repair (MMR). DNA polymerases (Pols) δ and ε have 3'-5' exonucleases into which mismatches are partitioned for excision in cis (intrinsic proofreading). Here we provide strong evidence that Pol δ can extrinsically proofread mismatches made by itself and those made by Pol ε, independently of both Pol δ's polymerization activity and MMR. Extrinsic proofreading across the genome is remarkably efficient. We report, with unprecedented accuracy, in vivo contributions of nucleotide selectivity, proofreading, and MMR to the fidelity of DNA replication in Saccharomyces cerevisiae. We show that extrinsic proofreading by Pol δ improves and balances the fidelity of the two DNA strands. Together, we depict a comprehensive picture of how nucleotide selectivity, proofreading, and MMR cooperate to achieve high and symmetrical fidelity on the two strands.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Scott A. Lujan
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Adam B. Burkholder
- Integrative Bioinformatics Support Group, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Jordan St. Charles
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Joseph Dahl
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Corinne E. Farrell
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Jessica S. Williams
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Thomas A. Kunkel
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
7
|
Li GS, Yang LJ, Chen G, Huang SN, Fang YY, Huang WJ, Lu W, He J, Liu HC, Li LY, Mo BY, Lu HP. Laryngeal Squamous Cell Carcinoma: Clinical Significance and Potential Mechanism of Cell Division Cycle 45. Cancer Biother Radiopharm 2021; 37:300-312. [PMID: 34672813 DOI: 10.1089/cbr.2020.4314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Cell division cycle 45 (CDC45) plays an important role in the occurrence and development of numerous carcinomas, but its effect in laryngeal squamous cell carcinoma (LSCC) remains unclear. Materials and Methods: The messenger RNA and protein expression levels of CDC45 in LSCC were evaluated with a t test and the standard mean difference (SMD). The ability of CDC45 expression to distinguish the LSCC was assessed through receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA), protein-protein interaction, public databases, and online tools were used to explore the potential molecular mechanism of CDC45 in LSCC. Results: A high expression of CDC45 was identified in LSCC (SMD = 2.61, 95% confidence interval [1.62-3.61]). Through ROC curves, the expression of CDC45 makes it feasible to distinguish the LSCC group from the non-LSCC counterpart. CDC45 was relevant to the progression-free interval of LSCC patients (log-rank p = 0.03). GSEAs show that CDC45 is related to the cell cycle. CDC45, CDC6, KIF2C, and AURKB were identified as hub genes of LSCC. E2F1 may be the regulatory transcription factor of CDC45. Conclusions: High expression of CDC45 likely demonstrates carcinogenic effects in LSCC, and CDC45 is a potential target in screening and treatment of LSCC.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Lin-Jie Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Wei-Jian Huang
- Department of Pathology, Redcross Hospital of Yulin, Yulin, P.R. China
| | - Wei Lu
- Department of Pathology, Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Juan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - He-Chuan Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Lin-Yi Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Bin-Yu Mo
- Department of Otolaryngology, Liuzhou People's Hospital, Liuzhou, P.R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
8
|
Wei L, Ploss A. Mechanism of Hepatitis B Virus cccDNA Formation. Viruses 2021; 13:v13081463. [PMID: 34452329 PMCID: PMC8402782 DOI: 10.3390/v13081463] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.
Collapse
|
9
|
Marima R, Hull R, Penny C, Dlamini Z. Mitotic syndicates Aurora Kinase B (AURKB) and mitotic arrest deficient 2 like 2 (MAD2L2) in cohorts of DNA damage response (DDR) and tumorigenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108376. [PMID: 34083040 DOI: 10.1016/j.mrrev.2021.108376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Aurora Kinase B (AURKB) and Mitotic Arrest Deficient 2 Like 2 (MAD2L2) are emerging anticancer therapeutic targets. AURKB and MAD2L2 are the least well studied members of their protein families, compared to AURKA and MAD2L1. Both AURKB and MAD2L2 play a critical role in mitosis, cell cycle checkpoint, DNA damage response (DDR) and normal physiological processes. However, the oncogenic roles of AURKB and MAD2L2 in tumorigenesis and genomic instability have also been reported. DDR acts as an arbitrator for cell fate by either repairing the damage or directing the cell to self-destruction. While there is strong evidence of interphase DDR, evidence of mitotic DDR is just emerging and remains largely unelucidated. To date, inhibitors of the DDR components show effective anti-cancer roles. Contrarily, long-term resistance towards drugs that target only one DDR target is becoming a challenge. Targeting interactions between protein-protein or protein-DNA holds prominent therapeutic potential. Both AURKB and MAD2L2 play critical roles in the success of mitosis and their emerging roles in mitotic DDR cannot be ignored. Small molecule inhibitors for AURKB are in clinical trials. A few lead compounds towards MAD2L2 inhibition have been discovered. Targeting mitotic DDR components and their interaction is emerging as a potent next generation anti-cancer therapeutic target. This can be done by developing small molecule inhibitors for AURKB and MAD2L2, thereby targeting DDR components as anti-cancer therapeutic targets and/or targeting mitotic DDR. This review focuses on AURKB and MAD2L2 prospective synergy to deregulate the p53 DDR pathway and promote favourable conditions for uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Rahaba Marima
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa.
| | - Rodney Hull
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| |
Collapse
|
10
|
Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020; 477:3499-3525. [PMID: 32970141 PMCID: PMC7574821 DOI: 10.1042/bcj20200065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| |
Collapse
|
11
|
DNA replication protein Cdc45 directly interacts with PCNA via its PIP box in Leishmania donovani and the Cdc45 PIP box is essential for cell survival. PLoS Pathog 2020; 16:e1008190. [PMID: 32413071 PMCID: PMC7255605 DOI: 10.1371/journal.ppat.1008190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
DNA replication protein Cdc45 is an integral part of the eukaryotic replicative helicase whose other components are the Mcm2-7 core, and GINS. We identified a PIP box motif in Leishmania donovani Cdc45. This motif is typically linked to interaction with the eukaryotic clamp proliferating cell nuclear antigen (PCNA). The homotrimeric PCNA can potentially bind upto three different proteins simultaneously via a loop region present in each monomer. Multiple binding partners have been identified from among the replication machinery in other eukaryotes, and the concerted /sequential binding of these partners are central to the fidelity of the replication process. Though conserved in Cdc45 across Leishmania species and Trypanosoma cruzi, the PIP box is absent in Trypanosoma brucei Cdc45. Here we investigate the possibility of Cdc45-PCNA interaction and the role of such an interaction in the in vivo context. Having confirmed the importance of Cdc45 in Leishmania DNA replication we establish that Cdc45 and PCNA interact stably in whole cell extracts, also interacting with each other directly in vitro. The interaction is mediated via the Cdc45 PIP box. This PIP box is essential for Leishmania survival. The importance of the Cdc45 PIP box is also examined in Schizosaccharomyces pombe, and it is found to be essential for cell survival here as well. Our results implicate a role for the Leishmania Cdc45 PIP box in recruiting or stabilizing PCNA on chromatin. The Cdc45-PCNA interaction might help tether PCNA and associated replicative DNA polymerase to the DNA template, thus facilitating replication fork elongation. Though multiple replication proteins that associate with PCNA have been identified in other eukaryotes, this is the first report demonstrating a direct interaction between Cdc45 and PCNA, and while our analysis suggests the interaction may not occur in human cells, it indicates that it may not be confined to trypanosomatids.
Collapse
|
12
|
Sui Y, Qi L, Zhang K, Saini N, Klimczak LJ, Sakofsky CJ, Gordenin DA, Petes TD, Zheng DQ. Analysis of APOBEC-induced mutations in yeast strains with low levels of replicative DNA polymerases. Proc Natl Acad Sci U S A 2020; 117:9440-9450. [PMID: 32277034 PMCID: PMC7196835 DOI: 10.1073/pnas.1922472117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast strains with low levels of the replicative DNA polymerases (alpha, delta, and epsilon) have high levels of chromosome deletions, duplications, and translocations. By examining the patterns of mutations induced in strains with low levels of DNA polymerase by the human protein APOBEC3B (a protein that deaminates cytosine in single-stranded DNA), we show dramatically elevated amounts of single-stranded DNA relative to a wild-type strain. During DNA replication, one strand (defined as the leading strand) is replicated processively by DNA polymerase epsilon and the other (the lagging strand) is replicated as short fragments initiated by DNA polymerase alpha and extended by DNA polymerase delta. In the low DNA polymerase alpha and delta strains, the APOBEC-induced mutations are concentrated on the lagging-strand template, whereas in the low DNA polymerase epsilon strain, mutations occur on the leading- and lagging-strand templates with similar frequencies. In addition, for most genes, the transcribed strand is mutagenized more frequently than the nontranscribed strand. Lastly, some of the APOBEC-induced clusters in strains with low levels of DNA polymerase alpha or delta are greater than 10 kb in length.
Collapse
Affiliation(s)
- Yang Sui
- Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Lei Qi
- Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Ke Zhang
- Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Cynthia J Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710;
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, 316021 Zhoushan, China;
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
13
|
Dovrat D, Dahan D, Sherman S, Tsirkas I, Elia N, Aharoni A. A Live-Cell Imaging Approach for Measuring DNA Replication Rates. Cell Rep 2019; 24:252-258. [PMID: 29972785 DOI: 10.1016/j.celrep.2018.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/02/2018] [Accepted: 06/01/2018] [Indexed: 10/28/2022] Open
Abstract
We describe a simple and direct approach to measure the progression of single DNA replication forks in living cells by monitoring two fluorescently labeled loci downstream of an origin of replication. We employ this approach to investigate the roles of several leading and lagging strand factors in overall replisome function and show that fork progression is strongly dependent on proper maturation of Okazaki fragments. We also demonstrate how related cellular phenotypes, such as cell-cycle progression and the dynamics of sister chromatid cohesion, may be simultaneously monitored and correlated to DNA replication at the single-cell level.
Collapse
Affiliation(s)
- Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Danielle Dahan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Shachar Sherman
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Natalie Elia
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel.
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel.
| |
Collapse
|
14
|
Garbacz MA, Cox PB, Sharma S, Lujan SA, Chabes A, Kunkel TA. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Nucleic Acids Res 2019; 47:3986-3995. [PMID: 30698744 DOI: 10.1093/nar/gkz048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.
Collapse
Affiliation(s)
- Marta A Garbacz
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Phillip B Cox
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
15
|
Gardner AF, Kelman Z. Editorial: The DNA Replication Machinery as Therapeutic Targets. Front Mol Biosci 2019; 6:35. [PMID: 31179285 PMCID: PMC6537510 DOI: 10.3389/fmolb.2019.00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/02/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Zvi Kelman
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, Rockville, MD, United States.,National Institute of Standards and Technology, Rockville, MD, United States
| |
Collapse
|
16
|
Khandagale P, Peroumal D, Manohar K, Acharya N. Human DNA polymerase delta is a pentameric holoenzyme with a dimeric p12 subunit. Life Sci Alliance 2019; 2:2/2/e201900323. [PMID: 30885984 PMCID: PMC6424025 DOI: 10.26508/lsa.201900323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023] Open
Abstract
The subunit p12 of human DNA polymerase delta (hPolδ) can dimerize, facilitating its interaction with PCNA and suggesting that hPolδ exists in a pentameric form in the cell. Human DNA polymerase delta (Polδ), a holoenzyme consisting of p125, p50, p68, and p12 subunits, plays an essential role in DNA replication, repair, and recombination. Herein, using multiple physicochemical and cellular approaches, we found that the p12 protein forms a dimer in solution. In vitro reconstitution and pull down of cellular Polδ by tagged p12 substantiate the pentameric nature of this critical holoenzyme. Furthermore, a consensus proliferating nuclear antigen (PCNA) interaction protein motif at the extreme carboxyl-terminal tail and a homodimerization domain at the amino terminus of the p12 subunit were identified. Mutational analyses of these motifs in p12 suggest that dimerization facilitates p12 binding to the interdomain connecting loop of PCNA. In addition, we observed that oligomerization of the smallest subunit of Polδ is evolutionarily conserved as Cdm1 of Schizosaccharomyces pombe also dimerizes. Thus, we suggest that human Polδ is a pentameric complex with a dimeric p12 subunit, and discuss implications of p12 dimerization in enzyme architecture and PCNA interaction during DNA replication.
Collapse
Affiliation(s)
- Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
17
|
DNA Replication Through Strand Displacement During Lagging Strand DNA Synthesis in Saccharomyces cerevisiae. Genes (Basel) 2019; 10:genes10020167. [PMID: 30795600 PMCID: PMC6409922 DOI: 10.3390/genes10020167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
This review discusses a set of experimental results that support the existence of extended strand displacement events during budding yeast lagging strand DNA synthesis. Starting from introducing the mechanisms and factors involved in leading and lagging strand DNA synthesis and some aspects of the architecture of the eukaryotic replisome, we discuss studies on bacterial, bacteriophage and viral DNA polymerases with potent strand displacement activities. We describe proposed pathways of Okazaki fragment processing via short and long flaps, with a focus on experimental results obtained in Saccharomyces cerevisiae that suggest the existence of frequent and extended strand displacement events during eukaryotic lagging strand DNA synthesis, and comment on their implications for genome integrity.
Collapse
|
18
|
Aria V, Yeeles JTP. Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins. Mol Cell 2018; 73:S1097-2765(18)30879-7. [PMID: 30451148 PMCID: PMC6344338 DOI: 10.1016/j.molcel.2018.10.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022]
Abstract
DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome.
Collapse
Affiliation(s)
- Valentina Aria
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
19
|
Evrin C, Maman JD, Diamante A, Pellegrini L, Labib K. Histone H2A-H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin. EMBO J 2018; 37:embj.201899021. [PMID: 30104407 PMCID: PMC6166128 DOI: 10.15252/embj.201899021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/18/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re‐deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone‐binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating‐type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone‐binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin‐derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone‐binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.
Collapse
Affiliation(s)
- Cecile Evrin
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joseph D Maman
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aurora Diamante
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
20
|
Li H, O'Donnell ME. The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism. Bioessays 2018; 40. [PMID: 29405332 DOI: 10.1002/bies.201700208] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Indexed: 01/12/2023]
Abstract
The eukaryotic helicase is an 11-subunit machine containing an Mcm2-7 motor ring that encircles DNA, Cdc45 and the GINS tetramer, referred to as CMG (Cdc45, Mcm2-7, GINS). CMG is "built" on DNA at origins in two steps. First, two Mcm2-7 rings are assembled around duplex DNA at origins in G1 phase, forming the Mcm2-7 "double hexamer." In a second step, in S phase Cdc45 and GINS are assembled onto each Mcm2-7 ring, hence producing two CMGs that ultimately form two replication forks that travel in opposite directions. Here, we review recent findings about CMG structure and function. The CMG unwinds the parental duplex and is also the organizing center of the replisome: it binds DNA polymerases and other factors. EM studies reveal a 20-subunit core replisome with the leading Pol ϵ and lagging Pol α-primase on opposite faces of CMG, forming a fundamentally asymmetric architecture. Structural studies of CMG at a replication fork reveal unexpected details of how CMG engages the DNA fork. The structures of CMG and the Mcm2-7 double hexamer on DNA suggest a completely unanticipated process for formation of bidirectional replication forks at origins.
Collapse
Affiliation(s)
- Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Michael E O'Donnell
- Department of DNA Replication, Rockefeller University and HHMI, New York, NY 10065, USA
| |
Collapse
|
21
|
Replication fork convergence at termination: A multistep process. Proc Natl Acad Sci U S A 2017; 115:237-239. [PMID: 29259108 DOI: 10.1073/pnas.1719825115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proc Natl Acad Sci U S A 2017; 114:E9529-E9538. [PMID: 29078375 PMCID: PMC5692578 DOI: 10.1073/pnas.1712537114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During replication initiation, the core component of the helicase-the Mcm2-7 hexamer-is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide-oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2-Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion.
Collapse
|
23
|
Szwajczak E, Fijalkowska IJ, Suski C. The CysB motif of Rev3p involved in the formation of the four-subunit DNA polymerase ζ is required for defective-replisome-induced mutagenesis. Mol Microbiol 2017; 106:659-672. [PMID: 28941243 DOI: 10.1111/mmi.13846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
Abstract
Eukaryotic DNA replication is performed by high-fidelity multi-subunit replicative B-family DNA polymerases (Pols) α, δ and ɛ. Those complexes are composed of catalytic and accessory subunits and organized in multicomplex machinery: the replisome. The fourth B-family member, DNA polymerase zeta (Pol ζ), is responsible for a large portion of mutagenesis in eukaryotic cells. Two forms of Pol ζ have been identified, a hetero-dimeric (Pol ζ2 ) and a hetero-tetrameric (Pol ζ4 ) ones and recent data have demonstrated that Pol ζ4 is responsible for damage-induced mutagenesis. Here, using yeast Pol ζ mutant defective in the assembly of the Pol ζ four-subunit form, we show in vivo that [4Fe-4S] cluster in Pol ζ catalytic subunit (Rev3p) is also required for spontaneous (wild-type cells) and defective-replisome-induced mutagenesis - DRIM (pol3-Y708A, pol2-1 or psf1-100 cells), when cells are not treated with any external damaging agents.
Collapse
Affiliation(s)
- Ewa Szwajczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, 02-106, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, 02-106, Poland
| | - Catherine Suski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, 02-106, Poland
| |
Collapse
|