1
|
Chung SJ, Hadrick K, Nafiujjaman M, Apu EH, Hill ML, Nurunnabi M, Contag CH, Kim T. Targeted Biodegradable Near-Infrared Fluorescent Nanoparticles for Colorectal Cancer Imaging. ACS APPLIED BIO MATERIALS 2024. [PMID: 38574012 DOI: 10.1021/acsabm.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death in the U.S., and early detection and diagnosis are essential for effective treatment. Current methods are inadequate for rapid detection of early disease, revealing flat lesions, and delineating tumor margins with accuracy and molecular specificity. Fluorescence endoscopy can generate wide field-of-view images enabling detection of CRC lesions and margins; increased signal intensity and improved signal-to-noise ratios can increase both speed and sensitivity of cancer detection. For this purpose, we developed targeted near-infrared (NIR) fluorescent silica nanoparticles (FSNs). We tuned their size to 50-200 nm and conjugated their surface with an antibody to carcinoembryonic antigen (CEA) to prepare CEA-FSNs. The physicochemical properties and biodegradable profiles of CEA-FSN were characterized, and molecular targeting was verified in culture using HT29 (CEA positive) and HCT116 (CEA negative) cells. CEA-FSNs bound to the HT29 cells to a greater extent than to the HCT116 cells, and smaller CEA-FSNs were internalized into HT29 cells more efficiently than larger CEA-FSNs. After intravenous administration of CEA-FSNs, a significantly greater signal was observed from the CEA-positive HT29 than the CEA-negative HCT116 tumors in xenografted mice. In F344-PIRC rats, polyps in the intestine were detected by white-light endoscopy, and NIR fluorescent signals were found in the excised intestinal tissue after topical application of CEA-FSNs. Immunofluorescence imaging of excised tissue sections demonstrated that the particle signals coregistered with signals for both CRC and CEA. These results indicate that CEA-FSNs have potential as a molecular imaging marker for early diagnosis of CRC.
Collapse
Affiliation(s)
- Seock-Jin Chung
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kay Hadrick
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ehsanul Hoque Apu
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meghan L Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Christopher H Contag
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Guo Y, Hui CY, Liu L, Chen MP, Huang HY. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci Rep 2021; 11:13516. [PMID: 34188121 PMCID: PMC8242042 DOI: 10.1038/s41598-021-92878-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Engineered microorganisms have proven to be a highly effective and robust tool to specifically detect heavy metals in the environment. In this study, a highly specific pigment-based whole-cell biosensor has been investigated for the detection of bioavailable Hg(II) based on an artificial heavy metal resistance operon. The basic working principle of biosensors is based on the violacein biosynthesis under the control of mercury resistance (mer) promoter and mercury resistance regulator (MerR). Engineered biosensor cells have been demonstrated to selectively respond to Hg(II), and the specific response was not influenced by interfering metal ions. The response of violacein could be recognized by the naked eye, and the time required for the maximum response of violacein (5 h) was less than that of enhanced green fluorescence protein (eGFP) (8 h) in the single-signal output constructs. The response of violacein was almost unaffected by the eGFP in a double-promoter controlled dual-signals output construct. However, the response strength of eGFP was significantly decreased in this genetic construct. Exponentially growing violacein-based biosensor detected concentrations as low as 0.39 μM Hg(II) in a colorimetric method, and the linear relationship was observed in the concentration range of 0.78-12.5 μM. Non-growing biosensor cells responded to concentrations as low as 0.006 μM Hg(II) in a colorimetric method and in a Hg(II) containing plate sensitive assay, and the linear relationship was demonstrated in a very narrow concentration range. The developed biosensor was finally validated for the detection of spiked bioavailable Hg(II) in environmental water samples.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-Ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Min-Peng Chen
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-Ying Huang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
3
|
Abstract
The measurement of ion concentrations and fluxes inside living cells is key to understanding cellular physiology. Fluorescent indicators that can infiltrate and provide intel on the cellular environment are critical tools for biological research. Developing these molecular informants began with the seminal work of Racker and colleagues ( Biochemistry (1979) 18, 2210), who demonstrated the passive loading of fluorescein in living cells to measure changes in intracellular pH. This work continues, employing a mix of old and new tradecraft to create innovative agents for monitoring ions inside living systems.
Collapse
Affiliation(s)
- Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
4
|
Hugelier S, Van den Eynde R, Vandenberg W, Dedecker P. Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS. Talanta 2021; 226:122117. [PMID: 33676672 DOI: 10.1016/j.talanta.2021.122117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/03/2023]
Abstract
Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emitters in fixed cells, thus enhancing the information that can be obtained from a single measurement. We show that the data can be directly processed using multivariate curve resolution - alternating least squares (MCR-ALS) to deliver distinct images for each fluorophore in their local environment, and apply this methodology to membrane imaging using DiBAC4(3) and concanavalin A - Alexa Fluor 488 as the fluorophores. We find that the DiBAC4(3) displays two distinct degradation/recovery kinetics that correspond to two different label distributions, allowing us to simultaneously distinguish three different fluorescence distributions from two spectrally overlapping fluorophores. We expect that our approach will scale to other dynamically-binding dyes, leading to similarly increased multiplexing capability.
Collapse
Affiliation(s)
- S Hugelier
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium.
| | - R Van den Eynde
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium
| | - W Vandenberg
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium; Univ. Lille, CNRS, Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement (LASIRE), F-59000 Lille, France
| | - P Dedecker
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Broch F, Gautier A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. Chempluschem 2020; 85:1487-1497. [PMID: 32644262 DOI: 10.1002/cplu.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Cellular activity is defined by the precise spatiotemporal regulation of various components, such as ions, small molecules, or proteins. Studying cell physiology consequently requires the optical recording of these processes, notably by using fluorescent biosensors. The recent development of various fluorogenic systems greatly expanded the palette of reporters to be included in these sensors design. Fluorogenic reporters consist of a protein or RNA tag that can complex either an endogenous or a synthetic fluorogenic dye (so-called fluorogen). The intrinsic nature of these tags, along with the high tunability of their cognate chromophore provide interesting features such as far-red to near-infrared emission, oxygen independence, or unprecedented color versatility. These engineered photoreceptors, self-labelling proteins, or noncovalent aptamers and protein tags were rapidly identified as promising reporters to observe biological events. This Minireview focuses on the new perspectives they offer to design unique and innovative biosensors, thus pushing the boundaries of cellular imaging.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France.,Institut Universitaire de France, France
| |
Collapse
|
6
|
Alam MW, Vedaei SS, Wahid KA. A Fluorescence-Based Wireless Capsule Endoscopy System for Detecting Colorectal Cancer. Cancers (Basel) 2020; 12:E890. [PMID: 32268557 PMCID: PMC7226276 DOI: 10.3390/cancers12040890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Wireless capsule endoscopy (WCE) has been widely used in gastrointestinal (GI) diagnosis that allows the physicians to examine the interior wall of the human GI tract through a pain-free procedure. However, there are still several limitations of the technology, which limits its functionality, ultimately limiting its wide acceptance. Its counterpart, the wired endoscopic system is a painful procedure that demotivates patients from going through the procedure, and adversely affects early diagnosis. Furthermore, the current generation of capsules is unable to automate the detection of abnormality. As a result, physicians are required to spend longer hours to examine each image from the endoscopic capsule for abnormalities, which makes this technology tiresome and error-prone. Early detection of cancer is important to improve the survival rate in patients with colorectal cancer. Hence, a fluorescence-imaging-based endoscopic capsule that automates the detection process of colorectal cancer was designed and developed in our lab. The proof of concept of this endoscopic capsule was tested on porcine intestine and liquid phantom. The proposed WCE system offers great possibilities for future applicability in selective and specific detection of other fluorescently labelled cancers.
Collapse
Affiliation(s)
- Mohammad Wajih Alam
- Departement of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (S.S.V.); (K.A.W.)
| | | | | |
Collapse
|
7
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
8
|
A Low-Cost and Portable Smart Instrumentation for Detecting Colorectal Cancer Cells. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescence imaging is a well-known method for monitoring fluorescence emitted from the subject of interest and provides important insights about cell dynamics and molecules in mammalian cells. Currently, many solutions exist for measuring fluorescence, but the application methods are complex and the costs are high. This paper describes the design and development of a low-cost, smart and portable fluorimeter for the detection of colorectal cancer cell expressing IRFP702. A flashlight is used as a light source, which emits light in the visible range and acts as an excitation source, while a photodiode is used as a detector. It also uses a longpass filter to only allow the wavelength of interest to pass from the cultured cell. It eliminates the need of both the dichroic mirror and excitation filter, which makes the developed device low cost, compact and portable as well as lightweight. The custom-built sample chamber is black in color to minimize interference and is printed with a 3D printer to accommodate the detector circuitry. An established colorectal cancer cell line (human colorectal carcinoma (HCT116)) was cultured in the laboratory environment. A near-infrared fluorescent protein IRFP702 was expressed in the colorectal cancer cells that were used to test the proof-of-concept. The fluorescent cancer cells were first tested with a commercial imaging system (Odyssey® CLx) and then with the developed prototype to validate the result in a preclinical setting. The developed fluorimeter is versatile as it can also be used to detect multiple types of cancer cells by simply replacing the filters based on the fluorophore.
Collapse
|
9
|
Charbonneau AM, Al-Samadi A, Salo T, Tran SD. 3D Culture Histology Cryosectioned Well Insert Technology Preserves the Structural Relationship between Cells and Biomaterials for Time-Lapse Analysis of 3D Cultures. Biotechnol J 2019; 14:e1900105. [PMID: 31294920 DOI: 10.1002/biot.201900105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Indexed: 01/07/2023]
Abstract
When performing histology of softer biomaterials, aspiration disrupts the cellular and molecular location information. This study aims to develop a cryosectionable well insert able to preserve the biomaterial and cell's original 3D conformation from the well to histology analysis. The well insert is composed of a paraffin-coated gelatine pill. Within the coated capsule, the human epithelial cell line (NS-SV-AC) is cultured in Matrigel, GrowDex, Myogel, Myogel + GrowDex, or cell culture media for 14 days. At 0 and 14 days, the samples are frozen in liquid nitrogen and cryotome is used to create sections. The slides are stained by Sirius Red and immunohistochemistry using antibodies human collagens I-V and human Ki-67. Sirius Red shows pink shades of biomaterials and the best cellular vertical distribution throughout the sagittal section of the well is achieved with Matrigel, GrowDex, and Myogel + GrowDex; in Myogel and media, the cells sink. For collagen protein expression, only Matrigel induces a notable difference while in the other materials, collagen staining is weak or difficult to distinguish from endogenous collagens. Ki-67 expression is maintained over time. The 3D-cryo well insert provides a new time-lapse histology perspective of analysis for liquid or gel cultures that maintains cells and macromolecules in their unaltered in-well configuration.
Collapse
Affiliation(s)
- André M Charbonneau
- Faculty of Dentistry, McGill University, 3640 University Street, H3A 0C7, Montréal, Canada
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, 00014, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, 00014, Finland
| | - Simon D Tran
- Faculty of Dentistry, McGill University, 3640 University Street, H3A 0C7, Montréal, Canada
| |
Collapse
|
10
|
Visualizing the inner life of microbes: practices of multi-color single-molecule localization microscopy in microbiology. Biochem Soc Trans 2019; 47:1041-1065. [PMID: 31296734 DOI: 10.1042/bst20180399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
Abstract
In this review, we discuss multi-color single-molecule imaging and tracking strategies for studying microbial cell biology. We first summarize and compare the methods in a detailed literature review of published studies conducted in bacteria and fungi. We then introduce a guideline on which factors and parameters should be evaluated when designing a new experiment, from fluorophore and labeling choices to imaging routines and data analysis. Finally, we give some insight into some of the recent and promising applications and developments of these techniques and discuss the outlook for this field.
Collapse
|
11
|
Müller TG, Sakin V, Müller B. A Spotlight on Viruses-Application of Click Chemistry to Visualize Virus-Cell Interactions. Molecules 2019; 24:molecules24030481. [PMID: 30700005 PMCID: PMC6385038 DOI: 10.3390/molecules24030481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/03/2023] Open
Abstract
The replication of a virus within its host cell involves numerous interactions between viral and cellular factors, which have to be tightly controlled in space and time. The intricate interplay between viral exploitation of cellular pathways and the intrinsic host defense mechanisms is difficult to unravel by traditional bulk approaches. In recent years, novel fluorescence microscopy techniques and single virus tracking have transformed the investigation of dynamic virus-host interactions. A prerequisite for the application of these imaging-based methods is the attachment of a fluorescent label to the structure of interest. However, their small size, limited coding capacity and multifunctional proteins render viruses particularly challenging targets for fluorescent labeling approaches. Click chemistry in conjunction with genetic code expansion provides virologists with a novel toolbox for site-specific, minimally invasive labeling of virion components, whose potential has just recently begun to be exploited. Here, we summarize recent achievements, current developments and future challenges for the labeling of viral nucleic acids, proteins, glycoproteins or lipids using click chemistry in order to study dynamic processes in virus-cell interactions.
Collapse
Affiliation(s)
- Thorsten G Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Volkan Sakin
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Inamdar K, Floderer C, Favard C, Muriaux D. Monitoring HIV-1 Assembly in Living Cells: Insights from Dynamic and Single Molecule Microscopy. Viruses 2019; 11:v11010072. [PMID: 30654596 PMCID: PMC6357049 DOI: 10.3390/v11010072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 assembly process is a multi-complex mechanism that takes place at the host cell plasma membrane. It requires a spatio-temporal coordination of events to end up with a full mature and infectious virus. The molecular mechanisms of HIV-1 assembly have been extensively studied during the past decades, in order to dissect the respective roles of the structural and non-structural viral proteins of the viral RNA genome and of some host cell factors. Nevertheless, the time course of HIV-1 assembly was observed in living cells only a decade ago. The very recent revolution of optical microscopy, combining high speed and high spatial resolution, in addition to improved fluorescent tags for proteins, now permits study of HIV-1 assembly at the single molecule level within living cells. In this review, after a short description of these new approaches, we will discuss how HIV-1 assembly at the cell plasma membrane has been revisited using advanced super resolution microscopy techniques and how it can bridge the study of viral assembly from the single molecule to the entire host cell.
Collapse
Affiliation(s)
- Kaushik Inamdar
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Charlotte Floderer
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Cyril Favard
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Delphine Muriaux
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| |
Collapse
|