1
|
Mascanzoni F, Ayala I, Iannitti R, Luini A, Colanzi A. The Golgi checkpoint: Golgi unlinking during G2 is necessary for spindle formation and cytokinesis. Life Sci Alliance 2024; 7:e202302469. [PMID: 38479814 PMCID: PMC10941482 DOI: 10.26508/lsa.202302469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Entry into mitosis requires not only correct DNA replication but also extensive cell reorganization, including the separation of the Golgi ribbon into isolated stacks. To understand the significance of pre-mitotic Golgi reorganization, we devised a strategy to first block Golgi segregation, with the consequent G2-arrest, and then force entry into mitosis. We found that the cells forced to enter mitosis with an intact Golgi ribbon showed remarkable cell division defects, including spindle multipolarity and binucleation. The spindle defects were caused by reduced levels at the centrosome of the kinase Aurora-A, a pivotal spindle formation regulator controlled by Golgi segregation. Overexpression of Aurora-A rescued spindle formation, indicating a crucial role of the Golgi-dependent recruitment of Aurora-A at the centrosome. Thus, our results reveal that alterations of the pre-mitotic Golgi segregation in G2 have profound consequences on the fidelity of later mitotic processes and represent potential risk factors for cell transformation and cancer development.
Collapse
Affiliation(s)
- Fabiola Mascanzoni
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Roberta Iannitti
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Alberto Luini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
2
|
A review on regulation of cell cycle by extracellular matrix. Int J Biol Macromol 2023; 232:123426. [PMID: 36708893 DOI: 10.1016/j.ijbiomac.2023.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The extracellular matrix (ECM) is a network of structural proteins, glycoproteins and proteoglycans that assists independent cells in aggregating and forming highly organized functional structures. ECM serves numerous purposes and is an essential component of tissue structure and functions. Initially, the role of ECM was considered to be confined to passive functions like providing mechanical strength and structural identity to tissues, serving as barriers and platforms for cells. The doors to understanding ECM's proper role in tissue functioning opened with the discovery of cellular receptors, integrins to which ECM components binds and influences cellular activities. Understanding and utilizing ECM's potential to control cellular function has become a topic of much interest in recent decades, providing different outlooks to study processes involved in developmental programs, wound healing and tumour progression. On another front, the regulatory mechanisms operating to prevent errors in the cell cycle have been topics of a titanic amount of studies. This is expected as many diseases, most infamously cancer, are associated with defects in their functioning. This review focuses on how ECM, through different methods, influences the progression of the somatic cell cycle and provides deeper insights into molecular mechanisms of functional communication between adhesion complex, signalling pathways and cell cycle machinery.
Collapse
|
3
|
Chann AS, Chen Y, Kinwel T, Humbert PO, Russell SM. Scribble and E-cadherin cooperate to control symmetric daughter cell positioning by multiple mechanisms. J Cell Sci 2023; 136:286705. [PMID: 36661138 DOI: 10.1242/jcs.260547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
The fate of the two daughter cells is intimately connected to their positioning, which is in turn regulated by cell junction remodelling and orientation of the mitotic spindle. How multiple cues are integrated to dictate the ultimate positioning of daughters is not clear. Here, we identify novel mechanisms of regulation of daughter positioning in single MCF10A cells. The polarity protein, Scribble cooperates with E-cadherin for sequential roles in daughter positioning. First Scribble stabilises E-cadherin at the mitotic cortex as well as the retraction fibres, to mediate spindle orientation. Second, Scribble re-locates to the junction between the two daughters to allow a new E-cadherin-based-interface to form between them, influencing the width of the nascent daughter-daughter junction and subsequent cell positioning. Thus, E-cadherin and Scribble dynamically relocate to different intracellular sites during cell division to orient the mitotic spindle and control placement of the daughter cells after cell division. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Ye Chen
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Tanja Kinwel
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
4
|
Chen NP, Aretz J, Fässler R. CDK1-cyclin-B1-induced kindlin degradation drives focal adhesion disassembly at mitotic entry. Nat Cell Biol 2022; 24:723-736. [PMID: 35469017 PMCID: PMC9106588 DOI: 10.1038/s41556-022-00886-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/03/2022] [Indexed: 12/25/2022]
Abstract
The disassembly of integrin-containing focal adhesions (FAs) at mitotic entry is essential for cell rounding, mitotic retraction fibre formation, bipolar spindle positioning and chromosome segregation. The mechanism that drives FA disassembly at mitotic entry is unknown. Here, we show that the CDK1–cyclin B1 complex phosphorylates the integrin activator kindlin, which results in the recruitment of the cullin 9–FBXL10 ubiquitin ligase complex that mediates kindlin ubiquitination and degradation. This molecular pathway is essential for FA disassembly and cell rounding, as phospho-inhibitory mutations of the CDK1 motif prevent kindlin degradation, FA disassembly and mitotic cell rounding. Conversely, phospho-mimetic mutations promote kindlin degradation in interphase, accelerate mitotic cell rounding and impair mitotic retraction fibre formation. Despite the opposing effects on kindlin stability, both types of mutations cause severe mitotic spindle defects, apoptosis and aneuploidy. Thus, the exquisite regulation of kindlin levels at mitotic entry is essential for cells to progress accurately through mitosis. Chen et al. report that at mitotic entry, cyclin B1–CDK1 phosphorylates the focal adhesion protein kindlin to induce its proteasomal degradation and promote focal adhesion disassembly and mitotic rounding.
Collapse
Affiliation(s)
- Nan-Peng Chen
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
5
|
Ghilardi SJ, Aronson MS, Sgro AE. Ventral stress fibers induce plasma membrane deformation in human fibroblasts. Mol Biol Cell 2021; 32:1707-1723. [PMID: 34191528 PMCID: PMC8684729 DOI: 10.1091/mbc.e21-03-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Interactions between the actin cytoskeleton and the plasma membrane are important in many eukaryotic cellular processes. During these processes, actin structures deform the cell membrane outward by applying forces parallel to the fiber's major axis (as in migration) or they deform the membrane inward by applying forces perpendicular to the fiber's major axis (as in the contractile ring during cytokinesis). Here we describe a novel actin-membrane interaction in human dermal myofibroblasts. When labeled with a cytosolic fluorophore, the myofibroblasts displayed prominent fluorescent structures on the ventral side of the cell. These structures are present in the cell membrane and colocalize with ventral actin stress fibers, suggesting that the stress fibers bend the membrane to form a "cytosolic pocket" that the fluorophores diffuse into, creating the observed structures. The existence of this pocket was confirmed by transmission electron microscopy. While dissolving the stress fibers, inhibiting fiber protein binding, or inhibiting myosin II binding of actin removed the observed pockets, modulating cellular contractility did not remove them. Taken together, our results illustrate a novel actin-membrane bending topology where the membrane is deformed outward rather than being pinched inward, resembling the topological inverse of the contractile ring found in cytokinesis.
Collapse
Affiliation(s)
- Samuel J. Ghilardi
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| | - Mark S. Aronson
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| | - Allyson E. Sgro
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| |
Collapse
|
6
|
Wang S, Matsumoto K, Lish SR, Cartagena-Rivera AX, Yamada KM. Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell 2021; 184:3702-3716.e30. [PMID: 34133940 PMCID: PMC8287763 DOI: 10.1016/j.cell.2021.05.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/19/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required β1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Kazue Matsumoto
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Samantha R Lish
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Inchanalkar S, Balasubramanian N. Adhesion-growth factor crosstalk regulates AURKB activation and ERK signalling in re-adherent fibroblasts. J Biosci 2021. [DOI: 10.1007/s12038-021-00164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
9
|
Zucker RM, Ortenzio J, Degn LL, Boyes WK. Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy. PLoS One 2020; 15:e0240268. [PMID: 33259485 PMCID: PMC7707489 DOI: 10.1371/journal.pone.0240268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
During studies on the absorption and interactions between silver nanoparticles and mammalian cells grown in vitro it was observed that large extracellular rings of silver nanoparticles were deposited on the microscope slide, many located near post-mitotic cells. Silver nanoparticles (AgNP, 80nm), coated with citrate, were incubated at concentrations of 0.3 to 30 μg/ml with a human-derived culture of retinal pigment epithelial cells (ARPE-19) and observed using darkfield and fluorescent microscopy, 24 h after treatment. Approximately cell-sized extracellular rings of deposited AgNP were observed on the slides among a field of dispersed individual AgNP. The mean diameter of 45 nanoparticles circles was 62.5 +/-12 microns. Ring structures were frequently observed near what appeared to be post-mitotic daughter cells, giving rise to the possibility that cell membrane fragments were deposited on the slide during mitosis, and those fragments selectively attracted and retained silver nanoparticles from suspension in the cell culture medium. These circular structures were observable for the following technical reasons: 1) darkfield microscope could observe single nanoparticles below 100 nm in size, 2) a large concentration (108 and 109) of nanoparticles was used in these experiments 3) negatively charged nanoparticles were attracted to adhesion membrane proteins remaining on the slide from mitosis. The observation of silver nanoparticles attracted to apparent remnants of cellular mitosis could be a useful tool for the study of normal and abnormal mitosis.
Collapse
Affiliation(s)
- Robert M. Zucker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - Jayna Ortenzio
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - Laura L. Degn
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - William K. Boyes
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| |
Collapse
|
10
|
Zenoozi S, Mohamad Sadeghi GM, Rafiee M. Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Choi S, Goswami N, Schmidt F. Comparative Proteomic Profiling of 3T3-L1 Adipocyte Differentiation Using SILAC Quantification. J Proteome Res 2020; 19:4884-4900. [PMID: 32991178 DOI: 10.1021/acs.jproteome.0c00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipocyte differentiation is a general physiological process that is also critical for metabolic syndrome. In spite of extensive study in the past two decades, adipogenesis is a still complex cellular process that is accompanied by complicated molecular mechanisms. Here, we performed SILAC-based quantitative global proteomic profiling of 3T3-L1 adipocyte differentiation. We report protein changes to the proteome profiles, with 354 proteins exhibiting significant increase and 56 proteins showing decrease in our statistical analysis. Our results show that adipocyte differentiation is involved not only in metabolic processes by increasing TCA cycle, fatty acid synthesis, lipolysis, acetyl-CoA production, antioxidants, and electron transport, but also in nicotinamide metabolism, cristae formation, mitochondrial protein import, and Ca2+ transport into mitochondria and ER. A search for Chromosome-Centric Human Proteome Project (C-HPP) using neXtprot highlighted one protein with a protein existence uncertain (PE5) and 17 proteins as functionally uncharacterized protein existence 1 (uPE1). This study provides quantitative information on proteome changes in adipogenic differentiation, which is helpful in improving our understanding of the processes of adipogenesis.
Collapse
Affiliation(s)
- Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| | - Neha Goswami
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| |
Collapse
|
12
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
13
|
Ovarian Cancer Dissemination-A Cell Biologist's Perspective. Cancers (Basel) 2019; 11:cancers11121957. [PMID: 31817625 PMCID: PMC6966436 DOI: 10.3390/cancers11121957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) comprises multiple disease states representing a variety of distinct tumors that, irrespective of tissue of origin, genetic aberrations and pathological features, share common patterns of dissemination to the peritoneal cavity. EOC peritoneal dissemination is a stepwise process that includes the formation of malignant outgrowths that detach and establish widespread peritoneal metastases through adhesion to serosal membranes. The cell biology associated with outgrowth formation, detachment, and de novo adhesion is at the nexus of diverse genetic backgrounds that characterize the disease. Development of treatment for metastatic disease will require detailed characterization of cellular processes involved in each step of EOC peritoneal dissemination. This article offers a review of the literature that relates to the current stage of knowledge about distinct steps of EOC peritoneal dissemination, with emphasis on the cell biology aspects of the process.
Collapse
|
14
|
Wang S, Chai K, Chen J. A novel prognostic nomogram based on 5 long non-coding RNAs in clear cell renal cell carcinoma. Oncol Lett 2019; 18:6605-6613. [PMID: 31788117 PMCID: PMC6865834 DOI: 10.3892/ol.2019.11009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and invasive histological subtype of all kidney malignancies, with high levels of incidence and mortality. In the present study, long non-coding (lnc)RNA expression profiles of patients with ccRCC from The Cancer Genome Atlas database were comprehensively analyzed to identify differentially expressed lncRNAs (DElncRNAs). The patients with ccRCC were then divided into training and validation cohorts. Univariate and LASSO regression analyses were performed to select the most significant survival-associated candidate DElncRNAs in the training cohort. Multivariate Cox regression analysis was then performed to develop a risk score formula and a prognostic nomogram for predicting 3- and 5-year overall survival (OS). The accuracies of the nomogram predictions were evaluated by determining the area under the receiver operating characteristic curve (AUC) and a calibration plot. Finally, functional enrichment analysis and protein-protein interaction network prediction were implemented to predict the functions and molecular mechanisms of the candidate DElncRNAs in ccRCC. A total of 1,553 DElncRNAs were identified, and 5 candidate DElncRNAs (AC026992.2, AC245041.2, LINC00524, LINC01956 and LINC02080) were included in the nomogram. The AUC values for 3- and 5-year overall survival in the training cohort were 0.768 and 0.814, respectively, which were increased compared with that based on the clinical index (0.760 and 0.694, respectively). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the 521 mRNAs highly associated with 5 DElncRNAs were primarily involved in 17 terms and 25 pathways, respectively. Based on the 5 DElncRNAs, a novel and convenient prognostic nomogram for predicting 3- and 5-year OS for patients with ccRCC was developed. The results of the present study may be conducive to the development of a precise predictive tool for the prognosis of ccRCC and may provide information regarding the molecular mechanisms of ccRCC. However, additional experimental in vitro and in vivo studies investigating lncRNAs may be required.
Collapse
Affiliation(s)
- Sheng Wang
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310053, P.R. China.,Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| | - Kequn Chai
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| | - Jiabin Chen
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
15
|
Lock JG, Baschieri F, Jones MC, Humphries JD, Montagnac G, Strömblad S, Humphries MJ. Clathrin-containing adhesion complexes. J Cell Biol 2019; 218:2086-2095. [PMID: 31208994 PMCID: PMC6605790 DOI: 10.1083/jcb.201811160] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
An understanding of the mechanisms whereby cell adhesion complexes (ACs) relay signals bidirectionally across the plasma membrane is necessary to interpret the role of adhesion in regulating migration, differentiation, and growth. A range of AC types has been defined, but to date all have similar compositions and are dependent on a connection to the actin cytoskeleton. Recently, a new class of AC has been reported that normally lacks association with both the cytoskeleton and integrin-associated adhesome components, but is rich in components of the clathrin-mediated endocytosis machinery. The characterization of this new type of adhesion structure, which is emphasized by mitotic cells and cells in long-term culture, identifies a hitherto underappreciated link between the adhesion machinery and clathrin structures at the plasma membrane. While this discovery has implications for how ACs are assembled and disassembled, it raises many other issues. Consequently, to increase awareness within the field, and stimulate research, we explore a number of the most significant questions below.
Collapse
Affiliation(s)
- John G Lock
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Francesco Baschieri
- Institut National de la Santé et de la Recherche Médicale U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Matthew C Jones
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Guillaume Montagnac
- Institut National de la Santé et de la Recherche Médicale U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|