1
|
Kim S, Kim J. Units containing telomeric repeats are prevalent in subtelomeric regions of a Mesorhabditis isolate collected from the Republic of Korea. Genes Genomics 2024; 46:1461-1472. [PMID: 39367283 DOI: 10.1007/s13258-024-01576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Mesorhabditis is known for its somatic genome being only a small portion of the germline genome due to programmed DNA elimination. This phenotype may be associated with the maintenance of telomeres at the ends of fragmented somatic chromosomes. OBJECTIVE To comprehensively investigate the telomeric regions of Mesorhabditis nematodes at the sequence level, we endeavored to collect a Mesorhabditis nematode in the Republic of Korea and acquire its highly contiguous genome sequences. METHODS We isolated a Mesorhabditis nematode and assembled its 108-Mb draft genome using both 6.3 Gb (53 ×) of short-read and 3.0 Gb (25 × , N50 = 5.7 kb) of nanopore-based long-read sequencing data. Our genome assembly exhibits comparable quality to the public genome of Mesorhabditis belari in terms of contiguity and evolutionary conserved genes. RESULTS Unexpectedly, our Mesorhabditis genome has many more interstitial telomeric sequences (ITSs), specifically subtelomeric ones, compared to the genomes of Caenorhabditis elegans and M. belari. Moreover, several subtelomeric sequences containing ITSs had 4-26 homologous sequences, implying they are highly repetitive. Based on this highly repetitive nature, we hypothesize that subtelomeric ITSs might have accumulated through the action of transposable elements containing ITSs. CONCLUSIONS It still remains elusive whether these ITS-containing units are associated with programmed DNA elimination, but they may facilitate new telomere formation after DNA elimination. Our genomic resources for Mesorhabditis can aid in understanding how its distinct phenotypes have evolved.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Lim J, Kim W, Kim J, Lee J. Telomeric repeat evolution in the phylum Nematoda revealed by high-quality genome assemblies and subtelomere structures. Genome Res 2023; 33:1947-1957. [PMID: 37918961 PMCID: PMC10760449 DOI: 10.1101/gr.278124.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Telomeres are composed of tandem arrays of telomeric-repeat motifs (TRMs) and telomere-binding proteins (TBPs), which are responsible for ensuring end-protection and end-replication of chromosomes. TRMs are highly conserved owing to the sequence specificity of TBPs, although significant alterations in TRM have been observed in several taxa, except Nematoda. We used public whole-genome sequencing data sets to analyze putative TRMs of 100 nematode species and determined that three distinct branches included specific novel TRMs, suggesting that evolutionary alterations in TRMs occurred in Nematoda. We focused on one of the three branches, the Panagrolaimidae family, and performed a de novo assembly of four high-quality draft genomes of the canonical (TTAGGC) and novel TRM (TTAGAC) isolates; the latter genomes revealed densely clustered arrays of the novel TRM. We then comprehensively analyzed the subtelomeric regions of the genomes to infer how the novel TRM evolved. We identified DNA damage-repair signatures in subtelomeric sequences that were representative of consequences of telomere maintenance mechanisms by alternative lengthening of telomeres. We propose a hypothetical scenario in which TTAGAC-containing units are clustered in subtelomeric regions and pre-existing TBPs capable of binding both canonical and novel TRMs aided the evolution of the novel TRM in the Panagrolaimidae family.
Collapse
Affiliation(s)
- Jiseon Lim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Wonjoo Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea;
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
3
|
Sung S, Kim E, Niida H, Kim C, Lee J. Distinct characteristics of two types of alternative lengthening of telomeres in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:9122-9143. [PMID: 37496110 PMCID: PMC10516625 DOI: 10.1093/nar/gkad617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Telomere length must be maintained in actively dividing cells to avoid cellular arrest or death. In the absence of telomerase activity, activation of alternative lengthening of telomeres (ALT) allows the maintenance of telomeric length and prolongs the cellular lifespan. Our previous studies have established two types of ALT survivors from mouse embryonic stem cells. The key differences between these ALT survivors are telomere-constituting sequences: non-telomeric sequences and canonical telomeric repeats, with each type of ALT survivors being referred to as type I and type II, respectively. We explored how the characteristics of the two types of ALT lines reflect their fates using multi-omics approaches. The most notable gene expression signatures of type I and type II ALT cell lines were chromatin remodelling and DNA repair, respectively. Compared with type II cells, type I ALT cells accumulated more mutations and demonstrated persistent telomere instability. These findings indicate that cells of the same origin have separate routes for survival, thus providing insights into the plasticity of crisis-suffering cells and cancers.
Collapse
Affiliation(s)
- Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| | - Eunkyeong Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Daejeon 34141, Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| |
Collapse
|
4
|
Kim J, Kim C. A beginner's guide to assembling a draft genome and analyzing structural variants with long-read sequencing technologies. STAR Protoc 2022; 3:101506. [PMID: 35776635 PMCID: PMC9254108 DOI: 10.1016/j.xpro.2022.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
Advances in long-read DNA sequencing technologies have enabled researchers to obtain high-quality genomes and finely resolve structural variants (SVs) in many species, even from small laboratories. The hands-on protocol presented here will guide you through the process of analyzing three different types of publicly available Drosophila melanogaster datasets obtained using current long-read sequencing technologies. We hope that this protocol will help in guiding researchers who are new to the process of long-read sequencing analysis.
Collapse
Affiliation(s)
- Jun Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea.
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| |
Collapse
|
5
|
Lee BY, Kim J, Lee J. Intraspecific de novo gene birth revealed by presence-absence variant genes in Caenorhabditis elegans. NAR Genom Bioinform 2022; 4:lqac031. [PMID: 35464238 PMCID: PMC9022459 DOI: 10.1093/nargab/lqac031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Genes embed their evolutionary history in the form of various alleles. Presence-absence variants (PAVs) are extreme cases of such alleles, where a gene present in one haplotype does not exist in another. Because PAVs may result from either birth or death of a gene, PAV genes and their alternative alleles, if available, can represent a basis for rapid intraspecific gene evolution. Using long-read sequencing technologies, this study traced the possible evolution of PAV genes in the PD1074 and CB4856 C. elegans strains as well as their alternative alleles in 14 other wild strains. We updated the CB4856 genome by filling 18 gaps and identified 46 genes and 7,460 isoforms from both strains not annotated previously. We verified 328 PAV genes, out of which 46 were C. elegans-specific. Among these possible newly born genes, 12 had alternative alleles in other wild strains; in particular, the alternative alleles of three genes showed signatures of active transposons. Alternative alleles of three other genes showed another type of signature reflected in accumulation of small insertions or deletions. Research on gene evolution using both species-specific PAV genes and their alternative alleles may provide new insights into the process of gene evolution.
Collapse
Affiliation(s)
- Bo Yun Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Jun Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| | - Junho Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
6
|
Lee BY, Kim J, Lee J. Long-read sequencing infers a mechanism for copy number variation of template for alternative lengthening of telomeres in a wild C. elegans strain. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000563. [PMID: 35622501 PMCID: PMC9066243 DOI: 10.17912/micropub.biology.000563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 12/01/2022]
Abstract
Template for alternative lengthening of telomeres 1 (TALT1) is a specific sequence used to protect chromosomal ends from telomere damage first identified in the CB4856 strain of Caenorhabditis elegans . Here we assembled the genome of DL226, a wild strain with one more copy of TALT1-like sequences in its genome compared to those of CB4856, using long-read DNA sequencing. We found that a five-copy array of short telomeric repeats and TALT1s present in CB4856 were changed to a six-copy array due to the duplication of the third copy; there was an additional damage-repair trace in the new short telomeric repeat near the newly replicated TALT1.
Collapse
Affiliation(s)
- Bo Yun Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
,
Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jun Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
,
Department of Biological Sciences, Seoul National University, Seoul, Korea
,
Correspondence to: Jun Kim (
)
| | - Junho Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
,
Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
,
Department of Biological Sciences, Seoul National University, Seoul, Korea
,
Correspondence to: Junho Lee (
)
| |
Collapse
|
7
|
Kim E, Kim J, Kim C, Lee J. Long-read sequencing and de novo genome assemblies reveal complex chromosome end structures caused by telomere dysfunction at the single nucleotide level. Nucleic Acids Res 2021; 49:3338-3353. [PMID: 33693840 PMCID: PMC8034613 DOI: 10.1093/nar/gkab141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Karyotype change and subsequent evolution is triggered by chromosome fusion and rearrangement events, which often occur when telomeres become dysfunctional. Telomeres protect linear chromosome ends from DNA damage responses (DDRs), and telomere dysfunction may result in genome instability. However, the complex chromosome end structures and the other possible consequences of telomere dysfunction have rarely been resolved at the nucleotide level due to the lack of the high-throughput methods needed to analyse these highly repetitive regions. Here we applied long-read sequencing technology to Caenorhabditis elegans survivor lines that emerged after telomere dysfunction. The survivors have preserved traces of DDRs in their genomes and our data revealed that variants generated by telomere dysfunction are accumulated along all chromosomes. The reconstruction of the chromosome end structures through de novo genome assemblies revealed diverse types of telomere damage processing at the nucleotide level. When telomeric repeats were totally eroded by telomere dysfunction, DDRs were mostly terminated by chromosome fusion events. We also partially reconstructed the most complex end structure and its DDR signatures, which would have been accumulated via multiple cell divisions. These finely resolved chromosome end structures suggest possible mechanisms regarding the repair processes after telomere dysfunction, providing insights into chromosome evolution in nature.
Collapse
Affiliation(s)
- Eunkyeong Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea.,Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Chuna Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Daejeon 34141, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea.,Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|