1
|
Appios A, Davies J, Sirvent S, Henderson S, Trzebanski S, Schroth J, Law ML, Carvalho IB, Pinto MM, Carvalho C, Kan HYH, Lovlekar S, Major C, Vallejo A, Hall NJ, Ardern-Jones M, Liu Z, Ginhoux F, Henson SM, Gentek R, Emmerson E, Jung S, Polak ME, Bennett CL. Convergent evolution of monocyte differentiation in adult skin instructs Langerhans cell identity. Sci Immunol 2024; 9:eadp0344. [PMID: 39241057 PMCID: PMC7616733 DOI: 10.1126/sciimmunol.adp0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/14/2024] [Indexed: 09/08/2024]
Abstract
Langerhans cells (LCs) are distinct among phagocytes, functioning both as embryo-derived, tissue-resident macrophages in skin innervation and repair and as migrating professional antigen-presenting cells, a function classically assigned to dendritic cells (DCs). Here, we demonstrate that both intrinsic and extrinsic factors imprint this dual identity. Using ablation of embryo-derived LCs in the murine adult skin and tracking differentiation of incoming monocyte-derived replacements, we found intrinsic intraepidermal heterogeneity. We observed that ontogenically distinct monocytes give rise to LCs. Within the epidermis, Jagged-dependent activation of Notch signaling, likely within the hair follicle niche, provided an initial site of LC commitment before metabolic adaptation and survival of monocyte-derived LCs. In the human skin, embryo-derived LCs in newborns retained transcriptional evidence of their macrophage origin, but this was superseded by DC-like immune modules after postnatal expansion. Thus, adaptation to adult skin niches replicates conditioning of LC at birth, permitting repair of the embryo-derived LC network.
Collapse
Affiliation(s)
- Anna Appios
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - James Davies
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Sofia Sirvent
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Stephen Henderson
- Bill Lyons Informatics Centre, Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Johannes Schroth
- William Harvey Research Institute, Barts & London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, LondonEC1M 6BQ, UK
| | - Morven L. Law
- William Harvey Research Institute, Barts & London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, LondonEC1M 6BQ, UK
| | - Inês Boal Carvalho
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Marlene Magalhaes Pinto
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Cyril Carvalho
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Howard Yuan-Hao Kan
- Bill Lyons Informatics Centre, Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Shreya Lovlekar
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Christina Major
- University Hospital Southampton NHS Foundation Trust, SouthamptonSO16 6YD, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Andres Vallejo
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Nigel J. Hall
- University Hospital Southampton NHS Foundation Trust, SouthamptonSO16 6YD, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Michael Ardern-Jones
- University Hospital Southampton NHS Foundation Trust, SouthamptonSO16 6YD, UK
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SouthamptonSo17 1BJ, UK
- Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore138648, Singapore
- Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire, Villejuif94800, France
| | - Sian M. Henson
- William Harvey Research Institute, Barts & London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, LondonEC1M 6BQ, UK
| | - Rebecca Gentek
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- Institute for Regeneration and Repair, University of Edinburgh, EdinburghEH16 4UU, UK
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Marta E. Polak
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Clare L. Bennett
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| |
Collapse
|
2
|
Lang M, Krump C, Meshcheryakova A, Tam-Amersdorfer C, Schwarzenberger E, Passegger C, Connolly S, Mechtcheriakova D, Strobl H. Microenvironmental and cell intrinsic factors governing human cDC2 differentiation and monocyte reprogramming. Front Immunol 2023; 14:1216352. [PMID: 37539048 PMCID: PMC10395083 DOI: 10.3389/fimmu.2023.1216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
cDC2s occur abundantly in peripheral tissues and arise from circulating blood cDC2s. However, the factors governing cDC2 differentiation in tissues, especially under inflammatory conditions, remained poorly defined. We here found that psoriatic cDC2s express the efferocytosis receptor Axl and exhibit a bone morphogenetic protein (BMP) and p38MAPK signaling signature. BMP7, strongly expressed within the lesional psoriatic epidermis, cooperates with canonical TGF-β1 signaling for inducing Axl+cDC2s from blood cDC2s in vitro. Moreover, downstream induced p38MAPK promotes Axl+cDC2s at the expense of Axl+CD207+ Langerhans cell differentiation from blood cDC2s. BMP7 supplementation allowed to model cDC2 generation and their further differentiation into LCs from CD34+ hematopoietic progenitor cells in defined serum-free medium. Additionally, p38MAPK promoted the generation of another cDC2 subset lacking Axl but expressing the non-classical NFkB transcription factor RelB in vitro. Such RelB+cDC2s occurred predominantly at dermal sites in the inflamed skin. Finally, we found that cDC2s can be induced to acquire high levels of the monocyte lineage identity factor kruppel-like-factor-4 (KLF4) along with monocyte-derived DC and macrophage phenotypic characteristics in vitro. In conclusion, inflammatory and psoriatic epidermal signals instruct blood cDC2s to acquire phenotypic characteristics of several tissue-resident cell subsets.
Collapse
Affiliation(s)
- Magdalena Lang
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Corinna Krump
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anastasia Meshcheryakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Elke Schwarzenberger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Christina Passegger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sally Connolly
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Mechtcheriakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Chopra A, Gupta A. Skin as an immune organ and the site of biomimetic, non-invasive vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Davies J, Sirvent S, Vallejo AF, Clayton K, Douilhet G, Keeler PS, West J, Ardern-Jones M, MacArthur BD, Singh H, Polak ME. Transcriptional programming of immunoregulatory responses in human Langerhans cells. Front Immunol 2022; 13:892254. [PMID: 36203560 PMCID: PMC9530347 DOI: 10.3389/fimmu.2022.892254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Human epidermal Langerhans cells (LCs) maintain immune homeostasis in the skin. To examine transcriptional programming of human primary LCs during homeostasis, we performed scRNA-seq analysis of LCs before and after migration from the epidermis, coupled with functional assessment of their regulatory T cell priming capabilities. The analysis revealed that steady-state LCs exist in a continuum of maturation states and upregulate antigen presentation genes along with an immunoregulatory module including the genes IDO1, LGALS1, LAMTOR1, IL4I, upon their migration. The migration-induced transition in genomic state is accompanied by the ability of LCs to more efficiently prime regulatory T cell responses in co-culture assays. Computational analyses of the scRNAseq datasets using SCENIC and Partial Information Decomposition in Context identified a set of migration-induced transcription factors including IRF4, KLF6 and RelB as key nodes within a immunoregulatory gene regulatory network. These findings support a model in which efficient priming of immunoregulatory responses by LCs is dependent on coordinated upregulation of a migration-coupled maturation program with a immunoregulation-promoting genomic module.
Collapse
Affiliation(s)
- James Davies
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F. Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kalum Clayton
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gemma Douilhet
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick S. Keeler
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan West
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Michael Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ben D. MacArthur
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Marta E. Polak, ; Harinder Singh,
| | - Marta E. Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- *Correspondence: Marta E. Polak, ; Harinder Singh,
| |
Collapse
|
5
|
The Roles of Skin Langerhans Cells in Immune Tolerance and Cancer Immunity. Vaccines (Basel) 2022; 10:vaccines10091380. [PMID: 36146458 PMCID: PMC9503294 DOI: 10.3390/vaccines10091380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Langerhans cells (LC) are a unique population of tissue-resident macrophages with dendritic cell (DC) functionality that form a network of cells across the epidermis of the skin. Their location at the skin barrier suggests an important role for LC as immune sentinels at the skin surface. The classification of LC as DC over the past few decades has driven the scientific community to extensively study how LC function as DC-like cells that prime T cell immunity. However, LC are a unique type of tissue-resident macrophages, and recent evidence also supports an immunoregulatory role of LC at steady state and during specific inflammatory conditions, highlighting the impact of cutaneous environment in shaping LC functionality. In this mini review, we discuss the recent literature on the immune tolerance function of LC in homeostasis and disease conditions, including malignant transformation and progression; as well as LC functional plasticity for adaption to microenvironmental cues and the potential connection between LC population heterogeneity and functional diversity. Future investigation into the molecular mechanisms that LC use to integrate different microenvironment cues and adapt immunological responses for controlling LC functional plasticity is needed for future breakthroughs in tumor immunology, vaccine development, and treatments for inflammatory skin diseases.
Collapse
|
6
|
MUM1/IRF4 is Highly Expressed in Dermatopathic Lymphadenopathy: Potential Utility in Diagnosis and Differential Diagnosis. Am J Surg Pathol 2022; 46:1514-1523. [PMID: 35877199 DOI: 10.1097/pas.0000000000001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dermatopathic lymphadenopathy (DL) is a distinctive type of lymph node hyperplasia that typically occurs in the setting of chronic dermatologic diseases. DL generally self-resolves following disappearance of the underlying skin stimulus and does not require any specific therapy. We recently observed multiple myeloma oncogene 1/interferon regulatory factor 4 (MUM1/IRF4) expression in a case of DL using immunohistochemical methods. The goal of this study was to systematically assess DL cases for MUM1/IRF4 expression and to survey other histiocytic and Langerhans cell lesions. We particularly focused on Langerhans cell histiocytosis (LCH) because the differential diagnosis of DL versus LCH in lymph nodes can be challenging. We identified high expression of MUM1/IRF4 in all 22 cases of DL tested. Specifically, MUM1/IRF4+ dendritic cells comprised 50% to 90% (median, 80%) of all dendritic cells in the paracortex of dermatopathic lymph nodes, always showing moderate or strong intensity. Among 10 DL cases stained for MUM1/IRF4 and langerin/CD207 using dual immunohistochemistry, MUM1/IRF4+ and langerin+ Langerhans cells represented 5% to 60% (median, 30%) of paracortical dendritic cells. MUM1/IRF4 was also positive in reactive Langerhans cells in skin biopsy specimens of all cases of spongiotic dermatitis (n=10) and normal skin (n=15), and was negative in all cases of LCH (n=24), Rosai-Dorfman disease (n=10), follicular dendritic cell sarcoma (n=5) and histiocytic sarcoma (n=4). In aggregate, our findings support the utility of MUM1/IRF4 to highlight the dendritic cells of DL and to distinguish DL from other histiocytic and Langerhans cells lesions.
Collapse
|
7
|
Elkington P, Polak ME, Reichmann MT, Leslie A. Understanding the tuberculosis granuloma: the matrix revolutions. Trends Mol Med 2022; 28:143-154. [PMID: 34922835 PMCID: PMC8673590 DOI: 10.1016/j.molmed.2021.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes the human disease tuberculosis (TB) and remains the top global infectious pandemic after coronavirus disease 2019 (COVID-19). Furthermore, TB has killed many more humans than any other pathogen, after prolonged coevolution to optimise its pathogenic strategies. Full understanding of fundamental disease processes in humans is necessary to successfully combat this highly successful pathogen. While the importance of immunodeficiency has been long recognised, biologic therapies and unbiased approaches are providing unprecedented insights into the intricacy of the host-pathogen interaction. The nature of a protective response is more complex than previously hypothesised. Here, we integrate recent evidence from human studies and unbiased approaches to consider how Mtb causes human TB and highlight the recurring theme of extracellular matrix (ECM) turnover.
Collapse
Affiliation(s)
- Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Marta E Polak
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michaela T Reichmann
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alasdair Leslie
- Department of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, KwaZulu-Natal, South Africa
| |
Collapse
|
8
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Bennett CL. Switching between tolerance and immunity: Do counter-acting gene networks dictate Langerhans cell function in the skin? Bioessays 2021; 43:e2100072. [PMID: 33782997 PMCID: PMC11478938 DOI: 10.1002/bies.202100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Clare L. Bennett
- Department of HaematologyUniversity College London (UCL) Cancer InstituteLondonUK
| |
Collapse
|