1
|
Kogure GS, Verruma CG, Santana BA, Calado RT, Ferriani RA, Furtado CLM, Dos Reis RM. Obesity contributes to telomere shortening in polycystic ovary syndrome. Reprod Sci 2024; 31:1601-1609. [PMID: 38393627 DOI: 10.1007/s43032-024-01485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial disorder and obesity occurs in 38% to 88% of these women. Although hyperandrogenism may contribute to telomere lengthening, increased body mass index (BMI) is associated with telomere erosion. We sought to compare leukocyte telomere length (LTL) in PCOS women with normal, overweight, and obese BMI. We evaluated the relationship between LTL and clinical variables of PCOS and inflammatory biomarkers independent of BMI. A total of 348 women (243 PCOS and 105 non-PCOS) were evaluated for anthropometric measures, total testosterone, androstenedione, estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), sex hormone-binding globulin (SHBG), free androgen index (FAI), fasting insulin and glycemia, lipid profile, homocysteine, C-reactive protein (CRP) and homeostatic model of insulin resistance (HOMA-IR). LTL was measured by qPCR. The PCOS group presented higher weight, waist circumference, BMI, testosterone, LH, fasting insulin, FAI, and HOMA-IR, and lower E2, SHBG, and fasting glycemia measures compared with the non-PCOS. When stratified by BMI, LTL was increased in all subgroups in PCOS compared to non-PCOS. However, in the PCOS group, LTL was lower in overweight (P = 0.0187) and obese (P = 0.0018) compared to normal-weight women. The generalized linear model showed that BMI, androstenedione, homocysteine, and CRP were associated with telomere biology. Women with PCOS had longer LTL, however, overweight or obesity progressively contributes to telomere shortening and may affect reproductive outcomes of PCOS, while androstenedione may increase LTL.
Collapse
Affiliation(s)
- Gislaine Satyko Kogure
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Carolina Gennari Verruma
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Barbara A Santana
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rodrigo T Calado
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Cristiana Libardi Miranda Furtado
- Experimental Biology Center, Universidade de Fortaleza (UNFOR), Fortaleza, Brazil.
- Graduate Program in Medical Sciences, Universidade de Fortaleza, Fortaleza, Brazil.
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil.
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, Brazil.
| |
Collapse
|
2
|
Wu Y, Zhou J, Zhang J, Tang Z, Chen X, Huang L, Liu S, Chen H, Wang Y. Pertinence of glioma and single nucleotide polymorphism of TERT, CCDC26, CDKN2A/B and RTEL1 genes in glioma: a meta-analysis. Front Oncol 2023; 13:1180099. [PMID: 37746290 PMCID: PMC10512948 DOI: 10.3389/fonc.2023.1180099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Background Previous genetic-epidemiological studies considered TERT (rs2736100), CCDC26 (rs4295627), CDKN2A/B (rs4977756) and RTEL1 (rs6010620) gene polymorphisms as the risk factors specific to glioma. However, the data samples of previous genetic-epidemiological studies are modest to determine whether they have definite association with glioma. Method The study paid attention to systematically searching databases of PubMed, Embase, Web of Science (WoS), Scopus, Cochrane Library and Google Scholars. Meta-analysis under 5 genetic models, namely recessive model (RM), over-dominant model (O-DM), allele model (AM), co-dominant model (C-DM) and dominant model (DM) was conducted for generating odds ratios (ORs) and 95% confidence intervals (CIs). That was accompanied by subgroup analyses according to various racial groups. The software STATA 17.0 MP was implemented in the study. Result 21 articles were collected. According to data analysis results, in four genetic models (AM, RM, DM and C-DM) TERT gene rs2736100 polymorphism, CCDC26 gene rs4295627 polymorphism, CDKN2A/B gene rs4977756 polymorphism and RTEL1 gene rs6010620 polymorphisms increased the risk of glioma in Caucasians to different degrees. In Asian populations, the CCDC26 gene rs4295627 polymorphism and CDKN2A/B gene rs4977756 polymorphism did not exhibit a relevance to the risk of glioma. It is suggested to cautiously explain these results as the sample size is small. Conclusion The current meta-analysis suggested that the SNP of TERT (rs2736100), CCDC26 (rs4295627), CDKN2A/B (rs4977756) and RTEL1 (rs6010620) genes in glioma might increase risk of glioma, but there are ethnic differences. Further studies evaluating these polymorphisms and glioma risk are warranted.
Collapse
Affiliation(s)
- Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijian Tang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Chen
- School of Health, Brooks College, Sunnyvale, CA, United States
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, China
| | - Lulu Huang
- Medical Affairs, the Department of ICON Pharma Development Solutions (IPD), ICON Public Limited Company (ICON Plc), Beijing, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Dediatric Department, School of Clinical Medicine for Women and Children, China Three Gorges University, Yichang Maternal and Child Health Hospital, Yichang, China
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Smith S, Hoelzl F, Zahn S, Criscuolo F. Telomerase activity in ecological studies: What are its consequences for individual physiology and is there evidence for effects and trade-offs in wild populations. Mol Ecol 2022; 31:6239-6251. [PMID: 34664335 PMCID: PMC9788021 DOI: 10.1111/mec.16233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 02/02/2023]
Abstract
Increasing evidence at the cellular level is helping to provide proximate explanations for the balance between investment in growth, reproduction and somatic maintenance in wild populations. Studies of telomere dynamics have informed researchers about the loss and gain of telomere length both on a seasonal scale and across the lifespan of individuals. In addition, telomere length and telomere rate of loss seems to have evolved differently among taxonomic groups, and relate differently to organismal diversity of lifespan. So far, the mechanisms behind telomere maintenance remain elusive, although many studies have inferred a role for telomerase, an enzyme/RNA complex known to induce telomere elongation from laboratory studies. Exciting further work is also emerging that suggests telomerase (and/or its individual component parts) has a role in fitness that goes beyond the maintenance of telomere length. Here, we review the literature on telomerase biology and examine the evidence from ecological studies for the timing and extent of telomerase activation in relation to life history events associated with telomere maintenance. We suggest that the underlying mechanism is more complicated than originally anticipated, possibly involves several complimentary pathways, and is probably associated with high energetic costs. Potential pathways for future research are numerous and we outline what we see as the most promising prospects to expand our understanding of individual differences in immunity or reproduction efficiency.
Collapse
Affiliation(s)
- Steve Smith
- Konrad Lorenz Institute of EthologyUniversity of Veterinary Medicine, ViennaViennaAustria
| | - Franz Hoelzl
- Konrad Lorenz Institute of EthologyUniversity of Veterinary Medicine, ViennaViennaAustria
| | - Sandrine Zahn
- Department of Physiology, Evolution and BehaviourInstitut Pluridisciplinaire Hubert CurienCNRSUniversity of StrasbourgStrasbourgFrance
| | - François Criscuolo
- Department of Physiology, Evolution and BehaviourInstitut Pluridisciplinaire Hubert CurienCNRSUniversity of StrasbourgStrasbourgFrance
| |
Collapse
|
4
|
Zhang R, Shen S, Wei Y, Zhu Y, Li Y, Chen J, Guan J, Pan Z, Wang Y, Zhu M, Xie J, Xiao X, Zhu D, Li Y, Albanes D, Landi MT, Caporaso NE, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Wichmann HE, Rennert G, Arnold S, Brennan P, McKay JD, Field JK, Shete SS, Le Marchand L, Liu G, Andrew AS, Kiemeney LA, Zienolddiny-Narui S, Behndig A, Johansson M, Cox A, Lazarus P, Schabath MB, Aldrich MC, Dai J, Ma H, Zhao Y, Hu Z, Hung RJ, Amos CI, Shen H, Chen F, Christiani DC. A Large-Scale Genome-Wide Gene-Gene Interaction Study of Lung Cancer Susceptibility in Europeans With a Trans-Ethnic Validation in Asians. J Thorac Oncol 2022; 17:974-990. [PMID: 35500836 PMCID: PMC9512697 DOI: 10.1016/j.jtho.2022.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Although genome-wide association studies have been conducted to investigate genetic variation of lung tumorigenesis, little is known about gene-gene (G × G) interactions that may influence the risk of non-small cell lung cancer (NSCLC). METHODS Leveraging a total of 445,221 European-descent participants from the International Lung Cancer Consortium OncoArray project, Transdisciplinary Research in Cancer of the Lung and UK Biobank, we performed a large-scale genome-wide G × G interaction study on European NSCLC risk by a series of analyses. First, we used BiForce to evaluate and rank more than 58 billion G × G interactions from 340,958 single-nucleotide polymorphisms (SNPs). Then, the top interactions were further tested by demographically adjusted logistic regression models. Finally, we used the selected interactions to build lung cancer screening models of NSCLC, separately, for never and ever smokers. RESULTS With the Bonferroni correction, we identified eight statistically significant pairs of SNPs, which predominantly appeared in the 6p21.32 and 5p15.33 regions (e.g., rs521828C6orf10 and rs204999PRRT1, ORinteraction = 1.17, p = 6.57 × 10-13; rs3135369BTNL2 and rs2858859HLA-DQA1, ORinteraction = 1.17, p = 2.43 × 10-13; rs2858859HLA-DQA1 and rs9275572HLA-DQA2, ORinteraction = 1.15, p = 2.84 × 10-13; rs2853668TERT and rs62329694CLPTM1L, ORinteraction = 0.73, p = 2.70 × 10-13). Notably, even with much genetic heterogeneity across ethnicities, three pairs of SNPs in the 6p21.32 region identified from the European-ancestry population remained significant among an Asian population from the Nanjing Medical University Global Screening Array project (rs521828C6orf10 and rs204999PRRT1, ORinteraction = 1.13, p = 0.008; rs3135369BTNL2 and rs2858859HLA-DQA1, ORinteraction = 1.11, p = 5.23 × 10-4; rs3135369BTNL2 and rs9271300HLA-DQA1, ORinteraction = 0.89, p = 0.006). The interaction-empowered polygenetic risk score that integrated classical polygenetic risk score and G × G information score was remarkable in lung cancer risk stratification. CONCLUSIONS Important G × G interactions were identified and enriched in the 5p15.33 and 6p21.32 regions, which may enhance lung cancer screening models.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Zhu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Jiajin Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinxing Guan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zoucheng Pan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuzhuo Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junxing Xie
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiangjun Xiao
- The Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Dakai Zhu
- The Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yafang Li
- The Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen Lam
- Department of Medicine, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Adonina Tardon
- Faculty of Medicine, University of Oviedo and CIBERESP, Oviedo, Spain
| | - Chu Chen
- Department of Epidemiology, University of Washington School of Public Health, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Angela Risch
- Department of Biosciences and Cancer Cluster Salzburg, University of Salzburg, Salzburg, Austria
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
| | - Gadi Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Carmel, Haifa, Israel
| | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - John K Field
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sanjay S Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Angeline S Andrew
- Department of Epidemiology, Department of Community and Family Medicine, Dartmouth Geisel School of Medicine, Hanover, New Hampshire
| | - Lambertus A Kiemeney
- Department for Health Evidence, Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Angela Cox
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melinda C Aldrich
- Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhibin Hu
- China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- The Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Hongbing Shen
- China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Zhu L, Liu Z, Ren Y, Wu X, Liu Y, Wang T, Li Y, Cong Y, Guo Y. Neuroprotective effects of salidroside on ageing hippocampal neurons and naturally ageing mice via the PI3K/Akt/TERT pathway. Phytother Res 2021; 35:5767-5780. [PMID: 34374127 DOI: 10.1002/ptr.7235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/22/2021] [Accepted: 07/17/2021] [Indexed: 12/23/2022]
Abstract
Studies have found that salidroside, isolated from Rhodiola rosea L, has various pharmacological activities, but there have been no studies on the effects of salidroside on brain hippocampal senescence. The purpose of this study was to investigate the mechanistic role of salidroside in hippocampal neuron senescence and injury. In this study, long-term cultured primary rat hippocampal neurons and naturally aged C57 mice were treated with salidroside. The results showed that salidroside increased the viability and MAP2 expression, reduced β-galactosidase (β-gal) levels of rat primary hippocampal neurons. Salidroside also improved cognition dysfunction in ageing mice and alleviated neuronal degeneration in the ageing mice CA1 region. Moreover, salidroside decreased the levels of oxidative stress and p21, p16 protein expressions of hippocampal neurons and ageing mice. Salidroside promoted telomerase reverse transcriptase (TERT) protein expression via the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway. In conclusion, our findings suggest that salidroside has the potential to be used as a therapeutic strategy for anti-ageing and ageing-related disease treatment.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Zhenchao Liu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yuqian Ren
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Xiaolin Wu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yingjuan Liu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Tingting Wang
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yizhao Li
- Department of Neurology, Jinan Fanggan Rehabilitation Hospital, Jinan, China
| | - Yusheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| |
Collapse
|
6
|
Furtado CLM, Iannetta R, Ferriani RA, Rosa E Silva ACJS, Martinelli CE, Calado RT, Dos Reis RM. Telomere length is not altered in girls with idiopathic central precocious puberty treated with a GnRH analog - leuprolide acetate. Gynecol Endocrinol 2020; 36:1119-1123. [PMID: 32496827 DOI: 10.1080/09513590.2020.1770212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Idiopathic central precocious puberty (iCPP) presents a disproportionate advancement of bone age and maturation, as well as metabolic and endocrinological changes that may be related to effects on telomere biology. OBJECTIVE To investigate the telomere length in iCPP girls treated with GnRHa. STUDY DESIGN Observational case-control study with 85 girls, including 45 iCPP treated with GnRHa and 40 controls. It was analyzed age, height, weight and body mass index (BMI), insulin, triglycerides, testosterone, insulin resistance by HOMA, and telomere length by real-time PCR. Statistical analyses were determined by Wilcoxon test and Spearman correlation was carried out. RESULTS Weight, BMI, insulin level and HOMA index were higher in the iCPP than in the control group (p < .01); without difference between mean ages. The telomere length did not differ between iCPP and control group. However, a negative correlation was observed between the telomere length and age in iCPP (p = .0009) and control group (p = .014), and weight in the iCPP (p = .017). CONCLUSIONS We did not observe any difference in the telomere length in the iCPP and control group. Even though, some characteristics of the disease, such as increased weight and body fat, negatively influence the telomere biology.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Fortaleza, Brazil
| | - Renata Iannetta
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Carolina J S Rosa E Silva
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rodrigo Tocantins Calado
- Department of Medical Images, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Criscuolo F, Smith S, Zahn S, Heidinger BJ, Haussmann MF. Experimental manipulation of telomere length: does it reveal a corner-stone role for telomerase in the natural variability of individual fitness? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0440. [PMID: 29335364 DOI: 10.1098/rstb.2016.0440] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Telomeres, the non-coding ends of linear chromosomes, are thought to be an important mechanism of individual variability in performance. Research suggests that longer telomeres are indicative of better health and increased fitness; however, many of these data are correlational and whether these effects are causal are poorly understood. Experimental tests are emerging in medical and laboratory-based studies, but these types of experiments are rare in natural populations, which precludes conclusions at an evolutionary level. At the crossroads between telomere length and fitness is telomerase, an enzyme that can lengthen telomeres. Experimental modulation of telomerase activity is a powerful tool to manipulate telomere length, and to look at the covariation of telomerase, telomeres and individual life-history traits. Here, we review studies that manipulate telomerase activity in laboratory conditions and emphasize the associated physiological and fitness consequences. We then discuss how telomerase's impact on ageing may go beyond telomere maintenance. Based on this overview, we then propose several research avenues for future studies to explore how individual variability in health, reproduction and survival may have coevolved with different patterns of telomerase activity and expression. Such knowledge is of prime importance to fully understand the role that telomere dynamics play in the evolution of animal ageing.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- F Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - S Smith
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - S Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - B J Heidinger
- Biological Sciences Department, North Dakota State University, Stevens Hall, Fargo, ND 58108, USA
| | - M F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
8
|
Alves-Paiva RM, Kajigaya S, Feng X, Chen J, Desierto M, Wong S, Townsley DM, Donaires FS, Bertola A, Gao B, Young NS, Calado RT. Telomerase enzyme deficiency promotes metabolic dysfunction in murine hepatocytes upon dietary stress. Liver Int 2018; 38:144-154. [PMID: 28741793 PMCID: PMC5741503 DOI: 10.1111/liv.13529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/15/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Short telomeres and genetic telomerase defects are risk factors for some human liver diseases, ranging from non-alcoholic fatty liver disease and non-alcoholic steatohepatitis to cirrhosis. In murine models, telomere dysfunction has been shown to metabolically compromise hematopoietic cells, liver and heart via the activation of the p53-PGC axis. METHODS Tert- and Terc-deficient mice were challenged with liquid high-fat diet. Liver metabolic contents were analysed by CE-TOFMS and liver fat content was confirmed by confocal and electronic microscopy. RESULTS Tert-deficient but not Terc-deficient mice develop hepatocyte injury and frank steatosis when challenged with liquid high-fat diet. Upon high-fat diet, Tert-/- hepatocytes fail to engage the citric acid cycle (TCA), with an imbalance of NADPH/NADP+ and NADH/NAD+ ratios and depletion of intermediates of TCA cycle, such as cis-aconitic acid. Telomerase deficiency caused an intrinsic metabolic defect unresponsive to environmental challenge. Chemical inhibition of telomerase by zidovudine recapitulated the abnormal Tert-/- metabolic phenotype in Terc-/- hepatocytes. CONCLUSIONS Our findings indicate that in telomeropathies short telomeres are not the only molecular trigger and telomerase enzyme deficiency provokes hepatocyte metabolic dysfunction, abrogates response to environmental challenge, and causes cellular injury and steatosis, providing a mechanism for liver damage in telomere diseases.
Collapse
Affiliation(s)
- Raquel M. Alves-Paiva
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil,Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil,Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Marie Desierto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M. Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Flávia S. Donaires
- Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil
| | - Adeline Bertola
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Rodrigo T. Calado
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil,Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Fatemi A, Safa M, Kazemi A. MST-312 induces G2/M cell cycle arrest and apoptosis in APL cells through inhibition of telomerase activity and suppression of NF-κB pathway. Tumour Biol 2015; 36:8425-37. [DOI: 10.1007/s13277-015-3575-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022] Open
|
10
|
Gandolfi G, Ragazzi M, Frasoldati A, Piana S, Ciarrocchi A, Sancisi V. TERT promoter mutations are associated with distant metastases in papillary thyroid carcinoma. Eur J Endocrinol 2015; 172:403-13. [PMID: 25583906 DOI: 10.1530/eje-14-0837] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Transcriptional activating mutations in the promoter of the telomerase reverse transcriptase (TERT) gene were reported at high frequency in aggressive poorly differentiated and anaplastic thyroid cancers. By contrast, the relevance of these mutations in the metastatic behavior of well-differentiated thyroid cancer is still to be defined. The aim of this work was to investigate the frequency of TERT promoter mutations in a remarkable cohort of well-differentiated papillary thyroid carcinoma that developed distant metastases (DM-PTCs) and to establish whether these mutations may be predictive of metastatic behavior. DESIGN We analyzed the frequency of TERT promoter mutations in a group of 43 highly aggressive DM-PTCs. As controls, we analyzed these mutations in a group of 78 PTCs without distant metastases (control-PTCs). The possible correlation between TERT promoter mutations and BRAF V600E mutation was also investigated. METHODS TERT promoter mutational status was evaluated by direct sequencing of the hotspot harboring the C228T and the C250T mutations. RESULTS In the overall cohort of 121 PTCs analyzed, 17% of cases (21/121) carried a mutation in the TERT promoter. Noticeably, 33% of DM-PTCs were mutated in the TERT promoter while only 9% of the control-PTCs showed a mutation in this locus. We also observed a positive association between BRAF V600E and TERT C228T mutations in the cohort of DM-PTCs. CONCLUSIONS These results indicate that TERT promoter mutations are associated with the development of distant metastases in PTCs and may help in predicting aggressive behavior in this type of tumor.
Collapse
Affiliation(s)
- Greta Gandolfi
- Laboratory of Translational ResearchPathology UnitEndocrinology UnitArcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Moira Ragazzi
- Laboratory of Translational ResearchPathology UnitEndocrinology UnitArcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Andrea Frasoldati
- Laboratory of Translational ResearchPathology UnitEndocrinology UnitArcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Simonetta Piana
- Laboratory of Translational ResearchPathology UnitEndocrinology UnitArcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational ResearchPathology UnitEndocrinology UnitArcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational ResearchPathology UnitEndocrinology UnitArcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| |
Collapse
|
11
|
Pedroso DCC, Miranda-Furtado CL, Kogure GS, Meola J, Okuka M, Silva C, Calado RT, Ferriani RA, Keefe DL, dos Reis RM. Inflammatory biomarkers and telomere length in women with polycystic ovary syndrome. Fertil Steril 2014; 103:542-7.e2. [PMID: 25467041 DOI: 10.1016/j.fertnstert.2014.10.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To analyze whether leukocyte telomere length (LTL) is impaired in women with polycystic ovary syndrome (PCOS). DESIGN Case-control study. SETTING Hospital. PATIENT(S) A total of 274 women, including 150 patients with PCOS and 124 controls. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Body mass index (BMI), waist circumference, systemic arterial pressure, lipid profile, E(2), LH, T, androstenedione, PRL, TSH, sex hormone-binding globulin, C-reactive protein (CRP), homocysteine, free androgen index, and the homeostatic model of insulin sensitivity (HOMA-IR) index were analyzed. The LTL evaluation was measured by quantitative polymerase chain reaction. RESULT(S) The PCOS group had higher values for weight, BMI, waist circumference, systolic arterial pressure, triglycerides, LH, T, insulin, CRP, free androgen index, and HOMA-IR compared with the control group. Sex hormone-binding globulin and E(2) levels were lower in the PCOS group than in the control group. The LTL did not differ between groups. Age, BMI, and HOMA-IR had no significant effect on LTL. The inflammatory biomarkers CRP and homocysteine were negatively correlated with LTL in patients with PCOS. CONCLUSION(S) Our results showed no differences in LTL between patients with PCOS and controls, but CRP and homocysteine biomarkers negatively correlated with LTL in the PCOS group.
Collapse
Affiliation(s)
- Daiana Cristina Chielli Pedroso
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Gislaine Satyko Kogure
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Juliana Meola
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Maja Okuka
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, Florida
| | - Celso Silva
- Center for Reproductive Medicine, Orlando, Florida
| | - Rodrigo T Calado
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rui Alberto Ferriani
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, New York
| | - Rosana Maria dos Reis
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Wang W, Chen H, Li R, Ouyang N, Chen J, Huang L, Mai M, Zhang N, Zhang Q, Yang D. Telomerase activity is more significant for predicting the outcome of IVF treatment than telomere length in granulosa cells. Reproduction 2014; 147:649-57. [PMID: 24472817 DOI: 10.1530/rep-13-0223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous study has demonstrated that luteinized granulosa cells (GCs) have the potential to proliferate and that the telomerase activity (TA) of luteinized GCs may predict the clinical outcomes of IVF treatment. However, in the field of telomere research, there have always been different opinions regarding the significance of TA and telomere length (TL). Thus, in the present study, we compared the effects of these two parameters on IVF treatment outcomes in the same individuals. TL did not differ significantly between the pregnant group and the non-pregnant group. The TA, number of retrieved oocytes and rate of blastocyst transfer were significantly higher in the pregnant group than in the non-pregnant group (0.8825 OD×mm, 12.75±2.20 and 34.48%, respectively, in the pregnant group vs 0.513 OD×mm, 11.60±0.93 and 14.89%, respectively, in the non-pregnant group (P<0.05)), while basal FSH level was lower in the pregnant group than in the non-pregnant group. The subjects did not differ with regard to ovarian stimulation or other clinical characteristics. A TA increase of 1 OD×mm increased the chance of becoming pregnant 4.769-fold (odds ratio: 5.769, 95% CI: 1.434-23.212, P<0.014). The areas under the receiver operating characteristic curves were 0.576 for TL and 0.674 for TA (P=0.271 and P<0. 012 respectively). The corresponding cut-off points were 4.470 for TL and 0.650 OD×mm for TA. These results demonstrate that TA is a better predictor of pregnancy outcomes following IVF treatment than TL. No other clinical parameters, including age, baseline FSH level or peak oestradiol level, distinguished between the pregnant group and the non-pregnant group as effectively as TA.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Heidenreich B, Rachakonda PS, Hemminki K, Kumar R. TERT promoter mutations in cancer development. Curr Opin Genet Dev 2013; 24:30-7. [PMID: 24657534 DOI: 10.1016/j.gde.2013.11.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/18/2013] [Accepted: 11/03/2013] [Indexed: 12/20/2022]
Abstract
Human telomerase reverse transcriptase (TERT) encodes a rate-limiting catalytic subunit of telomerase that maintains genomic integrity. TERT expression is mostly repressed in somatic cells with exception of proliferative cells in self-renewing tissues and cancer. Immortality associated with cancer cells has been attributed to telomerase over-expression. The precise mechanism behind the TERT activation in cancers has mostly remained unknown. The newly described germline and recurrent somatic mutations in melanoma and other cancers in the TERT promoter that create de novo E-twenty six/ternary complex factors (Ets/TCF) binding sites, provide an insight into the possible cause of tumor-specific increased TERT expression. In this review we discuss the discovery and possible implications of the TERT promoter mutations in melanoma and other cancers.
Collapse
Affiliation(s)
- Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - P Sivaramakrishna Rachakonda
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Bernardes de Jesus B, Blasco MA. Telomerase at the intersection of cancer and aging. Trends Genet 2013; 29:513-20. [PMID: 23876621 DOI: 10.1016/j.tig.2013.06.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/07/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
Abstract
Although cancer and aging have been studied as independent diseases, mounting evidence suggests that cancer is an aging-associated disease and that cancer and aging share many molecular pathways. In particular, recent studies validated telomerase activation as a potential therapeutic target for age-related diseases; in addition, abnormal telomerase expression and telomerase mutations have been associated with many different types of human tumor. Here, we revisit the connection between telomerase and cancer and aging in light of recent findings supporting a role for telomerase not only in telomere elongation, but also in metabolic fitness and Wnt activation. Understanding the physiological impact of telomerase regulation is fundamental given the therapeutic strategies that are being developed that involve telomerase modulation.
Collapse
Affiliation(s)
- Bruno Bernardes de Jesus
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | | |
Collapse
|
15
|
Genetic variant in the telomerase gene modifies cancer risk in Lynch syndrome. Eur J Hum Genet 2012; 21:511-6. [PMID: 22948024 DOI: 10.1038/ejhg.2012.204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lynch syndrome (LS) is an inherited cancer-predisposing disorder caused by germline mutations in the mismatch repair (MMR) genes. The high variability in individual cancer risk observed among LS patients suggests the existence of modifying factors. Identifying genetic modifiers of risk could help implement personalized surveillance programs based on predicted cancer risks. Here we evaluate the role of the telomerase (hTERT) rs2075786 SNP as a cancer-risk modifier in LS, studying 255 and 675 MMR gene mutation carriers from Spain and the Netherlands, respectively. The study of the Spanish sample revealed that the minor allele (A) confers increased cancer risk at an early age. The analysis of the Dutch sample confirmed the association of the A allele, especially in homozygosity, with increased cancer risk in mutation carriers under the age of 45 (relative riskLSca<45_AA=2.90; 95% confidence interval=1.02-8.26). Rs2075786 is associated with colorectal cancer (CRC) risk neither in the general population nor in non-Lynch CRC families. In silico studies predicted that the SNP causes the disruption of a transcription binding site for a retinoid receptor, retinoid X receptor alpha, probably causing early telomerase activation and therefore accelerated carcinogenesis. Notably, cancer-affected LS patients with the AA genotype have shorter telomeres than those with GG. In conclusion, MMR gene mutation carriers with hTERT rs2075786 are at high risk to develop a LS-related tumor at an early age. Cancer-preventive measures and stricter cancer surveillance at early ages might help prevent or early detect cancer in these mutation carriers.
Collapse
|
16
|
Wolkowitz OM, Mellon SH, Epel ES, Lin J, Reus VI, Rosser R, Burke H, Compagnone M, Nelson JC, Dhabhar FS, Blackburn EH. Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol Psychiatry 2012; 17:164-72. [PMID: 21242992 PMCID: PMC3130817 DOI: 10.1038/mp.2010.133] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Telomeres are DNA-protein complexes that cap linear DNA strands, protecting DNA from damage. When telomeres critically shorten, cells become susceptible to senescence and apoptosis. Telomerase, a cellular ribonucleoprotein enzyme, rebuilds the length of telomeres and promotes cellular viability. Leukocyte telomeres are reportedly shortened in major depression, but telomerase activity in depression has not been previously reported. Further, there are no published reports of the effects of antidepressants on telomerase activity or on the relationship between telomerase activity and antidepressant response. Peripheral blood mononuclear cell (PBMC) telomerase activity was assessed in 20 medication-free depressed individuals and 18 controls. In total, 16 of the depressed individuals were then treated with sertraline in an open-label manner for 8 weeks, and PBMC telomerase activity was reassessed in 15 of these individuals after treatment. Pre- and post-treatment symptom severity was rated with the Hamilton Depression Rating Scale. All analyses were corrected for age and sex. Pre-treatment telomerase activity was significantly elevated in the depressed individuals compared with the controls (P=0.007) and was directly correlated with depression ratings (P<0.05) across all subjects. In the depressed group, individuals with relatively lower pre-treatment telomerase activity and with relatively greater increase in telomerase activity during treatment, showed superior antidepressant responses (P<0.05 and P<0.005, respectively). This is the first report characterizing telomerase activity in depressed individuals. PBMC telomerase activity might reflect a novel aspect of depressive pathophysiology and might represent a novel biomarker of antidepressant responsiveness.
Collapse
Affiliation(s)
- OM Wolkowitz
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - SH Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA
| | - ES Epel
- Department of Psychiatry and Health Psychology Program, UCSF School of Medicine, San Francisco, CA, USA
| | - J Lin
- Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA
| | - VI Reus
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - R Rosser
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - H Burke
- Department of Psychiatry and Health Psychology Program, UCSF School of Medicine, San Francisco, CA, USA
| | - M Compagnone
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - JC Nelson
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - FS Dhabhar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - EH Blackburn
- Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA
| |
Collapse
|
17
|
Abstract
Telomere and telomerase alterations have been reported in mood disorders. However, the role of telomerase in depression remains unclear. Here we show that chronic mild stress (CMS) led to a significant decrease in telomerase reverse transcriptase (TERT) level and telomerase activity in the hippocampus. Treatment with antidepressant fluoxetine reversed the CMS-induced TERT and telomerase activity changes. Inhibiting telomerase by systemic administration (100 mg · kg(-1) · d(-1), i.p., for 14 d), intrahippocampal microinjection (0.7 μmol, 2 μl), or infusion (using an osmotic minipump, 0.134 μg/μl, 0.25 μl/h) of 3'-azido-deoxythymidine (AZT) resulted in depression-like behaviors and impaired hippocampal neurogenesis in mice. In contrast, overexpressing telomerase by intrahippocampal infusion of recombinant adenovirus vector expressing mouse TERT (Ad-mTERT-GFP) led to neurogenesis upregulation, produced antidepressant-like behaviors, and prevented the CMS-induced behavioral modifications. Disrupting neurogenesis in the dentate gyrus by X-irradiation (15 Gy) of a restricted region of mouse brain containing the hippocampus abolished the antidepressant-like effect of Ad-mTERT-GFP. Additionally, AZT had no effect on DNA polymerase activity and did not cause cell damage in vitro and in vivo. Microinjection of AZT into the subventricular zone of lateral ventricle (0.7 μmol, 2 μl) inhibited local neurogenesis but had no behavioral effect. These results suggest that hippocampal telomerase is involved in the modulation of depression-related behaviors, possibly by regulating adult neurogenesis.
Collapse
|
18
|
Pande M, Spitz MR, Wu X, Gorlov IP, Chen WV, Amos CI. Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk. Carcinogenesis 2011; 32:1493-9. [PMID: 21771723 DOI: 10.1093/carcin/bgr136] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chromosome 5p15.33 has been identified by genome-wide association studies as one of the regions that associate with lung cancer risk. A few single-nucleotide polymorphisms (SNPs) in the telomerase reverse transcriptase (TERT) and cleft lip and palate transmembrane 1-like (CLPTM1L) genes located in this region have shown consistent associations. We performed dense genotyping of SNPs in this region to refine the previously reported association signals for lung cancer risk. Two hundred and fifteen SNPs were genotyped on an Illumina iSelect panel, in a hospital-based case-control study of 1681 lung cancer cases and 1235 unaffected controls. Association was tested using unconditional logistic regression, while adjusting for age, sex and pack-years smoked. Furthermore, since many of the SNPs were in linkage disequilibrium (LD), haplotype blocks were constructed, from which tagging SNPs at an r(2) threshold of ≥0.95 were included in a stepwise forward selection logistic regression model. Of the 215 SNPs, 69 were significant at P < 0.05 in univariate analysis; of these, 35 SNPs meeting the r(2) threshold were included in the multiple logistic regression model. Two SNPs, rs370348 (odds ratio = 0.76, P = 1.6 × 10(-6)) and rs4975538 (odds ratio = 1.18, P = 0.005), significantly associated with risk in the overall sample. Among ever smokers, rs4975615 (odds ratio = 0.75, P = 1.2 × 10(-4)) and rs4975538 (odds ratio = 1.26, P = 0.002) were significant, whereas among never-smokers, rs451360 (odds ratio = 0.62, P = 7.6 × 10(-5)) was significant. We refined the consistent association signal in this region, allowing for the considerable LD between SNPs and identified four novel SNPs that were independently and significantly associated with lung cancer risk. Results of these analyses strongly suggest effects on risk from several loci in the TERT/CLPTM1L region.
Collapse
Affiliation(s)
- Mala Pande
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston,TX 77030, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wolkowitz OM, Epel ES, Reus VI, Mellon SH. Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety 2010; 27:327-38. [PMID: 20376837 DOI: 10.1002/da.20686] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Depression has been likened to a state of "accelerated aging," and depressed individuals have a higher incidence of various diseases of aging, such as cardiovascular and cerebrovascular diseases, metabolic syndrome, and dementia. Chronic exposure to certain interlinked biochemical pathways that mediate stress-related depression may contribute to "accelerated aging," cell damage, and certain comorbid medical illnesses. Biochemical mediators explored in this theoretical review include the hypothalamic-pituitary-adrenal axis (e.g., hyper- or hypoactivation of glucocorticoid receptors), neurosteroids, such as dehydroepiandrosterone and allopregnanolone, brain-derived neurotrophic factor, excitotoxicity, oxidative and inflammatory stress, and disturbances of the telomere/telomerase maintenance system. A better appreciation of the role of these mediators in depressive illness could lead to refined models of depression, to a re-conceptualization of depression as a whole body disease rather than just a "mental illness," and to the rational development of new classes of medications to treat depression and its related medical comorbidities.
Collapse
Affiliation(s)
- Owen M Wolkowitz
- Department of Psychiatry, University of California School of Medicine, San Francisco, California, USA.
| | | | | | | |
Collapse
|
20
|
Chromosome 5p Region SNPs Are Associated with Risk of NSCLC among Women. J Cancer Epidemiol 2010; 2009:242151. [PMID: 20445798 PMCID: PMC2861408 DOI: 10.1155/2009/242151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022] Open
Abstract
In a population-based case-control study, we explored the associations between 42 polymorphisms in seven genes in this region and non-small cell lung cancer (NSCLC) risk among Caucasian (364 cases; 380 controls) and African American (95 cases; 103 controls) women. Two TERT region SNPs, rs2075786 and rs2853677, conferred an increased risk of developing NSCLC, especially among African American women, and TERT-rs2735940 was associated with a decreased risk of lung cancer among African Americans. Five of the 20 GHR polymorphisms and SEPP1-rs6413428 were associated with a marginally increased risk of NSCLC among Caucasians. Random forest analysis reinforced the importance of GHR among Caucasians and identified AMACR, TERT, and GHR among African Americans, which were also significant using gene-based risk scores. Smoking-SNP interactions were explored, and haplotypes in TERT and GHR associated with NSCLC risk were identified. The roles of TERT, GHR, AMACR and SEPP1 genes in lung carcinogenesis warrant further exploration.
Collapse
|
21
|
Wong VCH, Ma J, Hawkins CE. Telomerase inhibition induces acute ATM-dependent growth arrest in human astrocytomas. Cancer Lett 2008; 274:151-9. [PMID: 18945545 DOI: 10.1016/j.canlet.2008.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 07/15/2008] [Accepted: 09/09/2008] [Indexed: 11/18/2022]
Abstract
The purpose of the study was to examine the degree of hTERT, the catalytic subunit of telomerase, expression in paediatric high-grade astrocytoma and to explore the potential of telomerase inhibition as a therapy for these tumours. hTERT was expressed at high levels in 36 of 44 paediatric astrocytomas. Telomerase inhibition induced acute DNA damage and ATM-pathway-dependent G2/M cell cycle arrest in astrocytomas in vitro, both occurring prior to telomere shortening itself. Our data suggest that telomerase inhibition could be a useful adjuvant therapy for high-grade astrocytomas, potentially inducing tumour growth arrest following short-term treatment.
Collapse
Affiliation(s)
- Vincent C H Wong
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ont., Canada M5G 1X8
| | | | | |
Collapse
|
22
|
A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One 2008; 3:e3364. [PMID: 18846223 PMCID: PMC2561060 DOI: 10.1371/journal.pone.0003364] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/23/2008] [Indexed: 11/19/2022] Open
Abstract
Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from “authentic” telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words)
Collapse
|
23
|
Tománek M, Chronowska E, Kott T, Czerneková V. Telomerase activity in pig granulosa cells proliferating and differentiating in vitro. Anim Reprod Sci 2008; 104:284-98. [PMID: 17363198 DOI: 10.1016/j.anireprosci.2007.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/15/2007] [Accepted: 02/16/2007] [Indexed: 01/14/2023]
Abstract
The aim of the work was to analyze the telomerase activity (TA) in two different populations of pig granulosa cells (GC) proliferating and differentiating in vitro: (a) in relatively undifferentiated granulosa cells isolated from small (1-2 mm) antral follicles and (b) in functionally advanced, differentiated cells obtained from large (5-7 mm) antral follicles. The proliferative potential in vitro of small follicle granulosa cells (SF-GC) was higher than that of large follicle granulosa cells (LF-GC). EGF stimulated significantly (p<0.01) proliferation in SF-GC as well as LF-GC. FSH did not have a stimulating effect on proliferation in both of the GC populations. Steroidogenesis was induced in both SF- and LF-GC in vitro. Significantly higher (p<0.01) levels of estradiol were measured in LF-GC cultures. In SF-GC, no significantly different effects of EGF and FSH on estradiol production were found. The production of progesterone in vitro was higher in LF-GC than in SF-GC and its production was specifically promoted by FSH in contrast to estradiol the synthesis of which in vitro was less dependent on culture conditions. Using the TRAP assay telomerase activity was detected in freshly isolated and in vitro cultured pig SF- and LF-GC. In EGF, but not FSH stimulated SF-GC, significantly enhanced (p<0.05) TA in comparison with the control was observed at an interval of 24 h of culture. After the 48 h in vitro, levels of TA in both EGF and FSH treated cells were comparable with control. In LF-GC, both EGF and FSH stimulated significantly (p<0.05) TA after the 24h of in vitro culture. At an interval of 48 h, no significant differences in the level of TA were observed between control, EGF and FSH stimulated LF-GC. Comparing the levels of TA in SF- and LF-GC, significantly higher levels of TA were found in control (p<0.05) and EGF (p<0.01) treated SF-GC after 24 h in vitro. On the other hand, absolutely, but not significantly, higher levels of TA were found in LF-GC versus SF-GC in all culture conditions after 48 h in vitro.
Collapse
Affiliation(s)
- Milan Tománek
- Department of Biology of Reproduction, Research Institute of Animal Production, Prátelství 815. P.O. Box 1, CZ 104 01 Prague 10, Uhríneves, The Czech Republic.
| | | | | | | |
Collapse
|
24
|
Marie-Egyptienne DT, Brault ME, Zhu S, Autexier C. Telomerase inhibition in a mouse cell line with long telomeres leads to rapid telomerase reactivation. Exp Cell Res 2008; 314:668-75. [DOI: 10.1016/j.yexcr.2007.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/16/2007] [Accepted: 10/26/2007] [Indexed: 11/16/2022]
|
25
|
Tiede S, Kloepper JE, Bodò E, Tiwari S, Kruse C, Paus R. Hair follicle stem cells: walking the maze. Eur J Cell Biol 2007; 86:355-76. [PMID: 17576022 DOI: 10.1016/j.ejcb.2007.03.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/20/2007] [Accepted: 03/21/2007] [Indexed: 12/17/2022] Open
Abstract
The discovery of epithelial stem cells (eSCs) in the bulge region of the outer root sheath of hair follicles in mice and man has encouraged research into utilizing the hair follicle as a therapeutic source of stem cells (SCs) for regenerative medicine, and has called attention to the hair follicle as a highly instructive model system for SC biology. Under physiological circumstances, bulge eSCs serve as cell pool for the cyclic regeneration of the anagen hair bulb, while they can also regenerate the sebaceous gland and the epidermis after injury. More recently, melanocyte SCs, nestin+, mesenchymal and additional, as yet ill-defined "stem cell" populations, have also been identified in or immediately adjacent to the hair follicle epithelium, including in the specialized hair follicle mesenchyme (connective tissue sheath), which is crucial to wound healing. Thus the hair follicle and its adjacent tissue environment contain unipotent, multipotent, and possibly even pluripotent SC populations of different developmental origin. It provides an ideal model system for the study of central issues in SC biology such as plasticity and SC niches, and for the identification of reliable, specific SC markers, which distinguish them from their immediate progeny (e.g. transient amplifying cells). The current review attempts to provide some guidance in this growing maze of hair follicle-associated SCs and their progeny, critically reviews potential or claimed hair follicle SC markers, highlights related differences between murine and human hair follicles, and defines major unanswered questions in this rapidly advancing field.
Collapse
Affiliation(s)
- Stephan Tiede
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Jurisic D, Kirin I, Rabic D, Dojcinovic B, Coklo M, Zamolo G. The role of telomerase activity in psoriatic skin lesions. Med Hypotheses 2006; 68:1093-5. [PMID: 17113716 DOI: 10.1016/j.mehy.2006.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 09/14/2006] [Indexed: 10/23/2022]
Abstract
Psoriasis is a benign, chronic skin disease characterized by keratinocyte hyperproliferation and abnormal differentiation. Telomerase is an enzyme-reverse transcriptase that protects chromosomes from degradation by stabilizing telomere length. Recent studies suggest that telomerase activity (TA) may be responsible in part for some of nonmalignant proliferative skin diseases. There is evidence that telomerase has an active anti-apoptotic role. TA in general is associated with cellular proliferation. We hypothesize a relationship between TA, keratinocyte proliferation and apoptosis in psoriatic skin lesions. The TA in telomere elongation makes keratinocyte hyperproliferation possible and is at the same time, one of its limiting factors. This hyperproliferation in psoriasis occurs as a result of significant keratinocyte damage caused by self-reactive T-cells through induction of various apoptotic pathways. On the other hand, TA in telomere elongation, together with other factors, has an active anti-apoptotic role, preserving the necessary amount of equilibrium between these two processes (apoptosis and proliferation) therefore being the main reason why conversion of a psoriatic plaque to squamous cell carcinoma is rare. As there is little data on TA in psoriatic lesions, in evaluation of our hypothesis we suggest thorough parallel studies of TA, telomere length, apoptosis and proliferation in psoriatic lesional skin on multiple checkpoints and targets, using more samples so the reliability of the results would be higher. This is important since a better understanding of these factors might provide new possible therapeutic targets.
Collapse
Affiliation(s)
- Davor Jurisic
- Department of Surgery, Rijeka University Hospital, Tome Strizica 3, 51000 Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
27
|
Zamolo G, Coklo M, Bosnar A, Batinac T. The relationship between telomerase activity and proliferation in cutaneous melanoma. Med Hypotheses 2006; 68:125-7. [PMID: 16891062 DOI: 10.1016/j.mehy.2006.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 04/22/2006] [Indexed: 11/18/2022]
Abstract
Telomerase is a ribonucleoprotein reverse transcriptase which RNA component (TERC) and reverse transcriptase (TERT) function together to elongate telomeres. If cells are to survive and proliferate indefinitely, telomere preservation is essential for the immortalization process. Somatic cells rarely possess TA, but over 90% of tumor cells express active telomerase. Increased cell proliferation and deregulation of cell cycle occur in human cancers, including cutaneous melanoma. The exact nature of links between TA, cell proliferation and apoptosis has not been extensively elucidated in cutaneous melanoma. We hypothesize a relationship between TA and cutaneous melanoma cell proliferation in a way that TA in telomere elongation is only an early event in cell immortalization. The telomere elongation makes their proliferation possible and being, at the same time, one of its limiting factors. But the TA other than telomere elongation (TERC independent) is crucial to initiate or restore melanoma cell proliferation. On the other hand, TA in telomere elongation, together with other factors (for example TNF), has an active anti-apoptotic role. This way melanoma cells overwhelm the apoptotic defense mechanisms, finally resulting in their indefinite proliferation. In evaluation of our hypothesis, we suggest thorough studies of both telomerase activity and proliferation in cutaneous melanoma on multiple checkpoints and targets. We also suggest combined analyses of TA and telomere length. This approach seems inevitable since it is obvious that telomerase is no longer just for the elongation of telomeres and, to our knowledge, most of the studies conducted so far evaluated TA as an expression of a single subunit or associated molecule.
Collapse
Affiliation(s)
- Gordana Zamolo
- Department of Pathology and Forensic Medicine, Rijeka University School of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia.
| | | | | | | |
Collapse
|
28
|
Jain P, Cerone MA, Leblanc AC, Autexier C. Telomerase and neuronal marker status of differentiated NT2 and SK-N-SH human neuronal cells and primary human neurons. J Neurosci Res 2006; 85:83-9. [PMID: 17075923 DOI: 10.1002/jnr.21094] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Upon treatment with retinoic acid, NTera-2 (NT2) human teratocarcinoma and SK-N-SH neuroblastoma cells can be induced to terminally differentiate into postmitotic neuronal cells. The neuronal cell yield obtained from the NT-2 cells is partially dependent on the time of differentiation (24-55 days). SK-N-SH cells differentiate into a mixed population of neuronal and epithelium-like cells. Here we report modified protocols that increase the number of differentiated NT-2 and SK-N-SH cells and that establish an enriched neuronal SK-N-SH-derived cell population essentially devoid of nonneuronal cells. Differentiated cells express the cytoskeleton-associated protein tau and other typical neuronal markers, such as Map2, Ngn1, NeuroD, Mash1, and GluR which are also expressed in primary human fetal neurons. Telomerase activity is down-regulated in differentiated cells, which is consistent with the telomerase status of primary fetal human neurons. Thus, differentiated NT2 and SK-N-SH cells may represent an excellent source for studies investigating the role of telomerase or other survival-promoting activities in protecting human neuronal cells from cell death-mediating stresses associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Pooja Jain
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Jewish General Hospital, Montréal, Canada
| | | | | | | |
Collapse
|