1
|
Do C, Shearer A, Suzuki M, Terry MB, Gelernter J, Greally JM, Tycko B. Genetic-epigenetic interactions in cis: a major focus in the post-GWAS era. Genome Biol 2017. [PMID: 28629478 PMCID: PMC5477265 DOI: 10.1186/s13059-017-1250-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Studies on genetic-epigenetic interactions, including the mapping of methylation quantitative trait loci (mQTLs) and haplotype-dependent allele-specific DNA methylation (hap-ASM), have become a major focus in the post-genome-wide-association-study (GWAS) era. Such maps can nominate regulatory sequence variants that underlie GWAS signals for common diseases, ranging from neuropsychiatric disorders to cancers. Conversely, mQTLs need to be filtered out when searching for non-genetic effects in epigenome-wide association studies (EWAS). Sequence variants in CCCTC-binding factor (CTCF) and transcription factor binding sites have been mechanistically linked to mQTLs and hap-ASM. Identifying these sites can point to disease-associated transcriptional pathways, with implications for targeted treatment and prevention.
Collapse
Affiliation(s)
- Catherine Do
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Alyssa Shearer
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mary Beth Terry
- Department of Epidemiology, Columbia University Mailman School of Public Health, and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Joel Gelernter
- Departments of Psychiatry, Genetics, and Neurobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John M Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Benjamin Tycko
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Verstrepen BE, Boonstra A, Koopman G. Immune mechanisms of vaccine induced protection against chronic hepatitis C virus infection in chimpanzees. World J Hepatol 2015; 7:53-69. [PMID: 25624997 PMCID: PMC4295194 DOI: 10.4254/wjh.v7.i1.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by a high propensity for development of life-long viral persistence. An estimated 170 million people suffer from chronic hepatitis caused by HCV. Currently, there is no approved prophylactic HCV vaccine available. With the near disappearance of the most relevant animal model for HCV, the chimpanzee, we review the progression that has been made regarding prophylactic vaccine development against HCV. We describe the results of the individual vaccine evaluation experiments in chimpanzees, in relation to what has been observed in humans. The results of the different studies indicate that partial protection against infection can be achieved, but a clear correlate of protection has thus far not yet been defined.
Collapse
Affiliation(s)
- Babs E Verstrepen
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - André Boonstra
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - Gerrit Koopman
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| |
Collapse
|
3
|
|
4
|
An integrative view of dynamic genomic elements influencing human brain evolution and individual neurodevelopment. Med Hypotheses 2008; 71:360-73. [DOI: 10.1016/j.mehy.2008.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 03/01/2008] [Accepted: 03/06/2008] [Indexed: 11/23/2022]
|
5
|
Kehrer-Sawatzki H, Cooper DN. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum Mutat 2007; 28:99-130. [PMID: 17024666 DOI: 10.1002/humu.20420] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sequencing of the chimpanzee genome and the comparison with its human counterpart have begun to reveal the spectrum of genetic changes that has accompanied human evolution. In addition to gross karyotypic rearrangements such as the fusion that formed human chromosome 2 and the human-specific pericentric inversions of chromosomes 1 and 18, there is considerable submicroscopic structural variation involving deletions, duplications, and inversions. Lineage-specific segmental duplications, detected by array comparative genomic hybridization and direct sequence comparison, have made a very significant contribution to this structural divergence, which is at least three-fold greater than that due to nucleotide substitutions. Since structural genomic changes may have given rise to irreversible functional differences between the diverging species, their detailed analysis could help to identify the biological processes that have accompanied speciation. To this end, interspecies comparisons have revealed numerous human-specific gains and losses of genes as well as changes in gene expression. The very considerable structural diversity (polymorphism) evident within both lineages has, however, hampered the analysis of the structural divergence between the human and chimpanzee genomes. The concomitant evaluation of genetic divergence and diversity at the nucleotide level has nevertheless served to identify many genes that have evolved under positive selection and may thus have been involved in the development of human lineage-specific traits. Genes that display signs of weak negative selection have also been identified and could represent candidate loci for complex genomic disorders. Here, we review recent progress in comparing the human and chimpanzee genomes and discuss how the differences detected have improved our understanding of the evolution of the human genome.
Collapse
|
6
|
Demuth JP, Bie TD, Stajich JE, Cristianini N, Hahn MW. The evolution of mammalian gene families. PLoS One 2006; 1:e85. [PMID: 17183716 PMCID: PMC1762380 DOI: 10.1371/journal.pone.0000085] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 11/14/2006] [Indexed: 11/18/2022] Open
Abstract
Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes) in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic “revolving door” of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives.
Collapse
Affiliation(s)
- Jeffery P. Demuth
- Department of Biology and School of Informatics, Indiana UniversityBloomington, Indiana, United States of America
| | - Tijl De Bie
- School of Electronics and Computer Science, ISIS Group, University of SouthamptonSouthampton, United Kingdom
| | - Jason E. Stajich
- Department of Molecular Genetics and Microbiology, Duke UniversityDurham, North Carolina, United States of America
| | - Nello Cristianini
- Department of Statistics, University of California DavisDavis, California, United States of America
| | - Matthew W. Hahn
- Department of Biology and School of Informatics, Indiana UniversityBloomington, Indiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Kehrer-Sawatzki H, Cooper DN. Structural divergence between the human and chimpanzee genomes. Hum Genet 2006; 120:759-78. [PMID: 17066299 DOI: 10.1007/s00439-006-0270-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 09/19/2006] [Indexed: 01/17/2023]
Abstract
The structural microheterogeneity evident between the human and chimpanzee genomes is quite considerable and includes inversions and duplications as well as deletions, ranging in size from a few base-pairs up to several megabases (Mb). Insertions and deletions have together given rise to at least 150 Mb of genomic DNA sequence that is either present or absent in humans as compared to chimpanzees. Such regions often contain paralogous sequences and members of multigene families thereby ensuring that the human and chimpanzee genomes differ by a significant fraction of their gene content. There is as yet no evidence to suggest that the large chromosomal rearrangements which serve to distinguish the human and chimpanzee karyotypes have influenced either speciation or the evolution of lineage-specific traits. However, the myriad submicroscopic rearrangements in both genomes, particularly those involving copy number variation, are unlikely to represent exclusively neutral changes and hence promise to facilitate the identification of genes that have been important for human-specific evolution.
Collapse
|